
Chapter 11

Object and

Object-

Copyright © 2011 Pearson Education, Inc. Publishing as Pearson Addison-Wesley

Object-

Relational

Databases

Chapter 11 Outline

� Overview of Object Database Concepts

� Object-Relational Features:
Object Database Extensions to SQL

� The ODMG Object Model and the Object

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� The ODMG Object Model and the Object
Definition Language ODL

� Object Database Conceptual Design

� The Object Query Language OQL

� Overview of the C++ Language Binding in
the ODMG Standard

Object and Object-Relational

Databases
� Object databases (ODB)

� Object data management systems (ODMS)

� Meet some of the needs of more complex

applications

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

applications

� Specify:

• Structure of complex objects

• Operations that can be applied to these objects

Overview of Object Database

Concepts
� Introduction to object-oriented concepts

and features

� Origins in OO programming languages

� Object has two components:

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Object has two components:

• State (value) and behavior (operations)

� Instance variables

• Hold values that define internal state of object

� Operation is defined in two parts:

• Signature or interface and implementation

Overview of Object Database

Concepts (cont’d.)
� Inheritance

• Permits specification of new types or classes that

inherit much of their structure and/or operations

from previously defined types or classes

� Operator overloading

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Operator overloading

• Operation’s ability to be applied to different types of

objects

• Operation name may refer to several distinct

implementations

Object Identity, and Objects

versus Literals
� Unique identity

� Implemented via a unique, system-generated

object identifier (OID)

� Immutable

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Immutable

� Most OO database systems allow for the
representation of both objects and literals
(or values)

Complex Type Structures for

Objects and Literals
� Structure of arbitrary complexity

� Contain all necessary information that

describes object or literal

� Nesting type constructors

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Nesting type constructors

� Construct complex type from other types

� Most basic constructors:

� Atom

� Struct (or tuple)

� Collection

Complex Type Structures for

Objects and Literals (cont’d.)
� Collection types:

� Set

� Bag

� List

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� List

� Array

� Dictionary

� Object definition language (ODL)

� Used to define object types for a particular

database application

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Encapsulation of Operations and

Persistence of Objects
� Encapsulation

� Related to abstract data types and information

hiding in programming languages

� Define behavior of a type of object based on

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Define behavior of a type of object based on

operations that can be externally applied

� External users only aware of interface of the

operations

� Divide structure of object into visible and

hidden attributes

Object Behavior/Operations

� See figure 11.2

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Encapsulation of Operations
� Object constructor

� Used to create a new object

� Destructor operation

� Used to destroy (delete) an object

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Modifier operations

� Modify the states (values) of various attributes

of an object

� Retrieve information about the object

� Dot notation used to apply operations to
object

Persistence of Objects

� Transient objects

� Exist in executing program

� Disappear once program terminates

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Persistent objects

� Stored in database and persist after program

termination

� Naming mechanism

� Reachability

Type Hierarchies and

Inheritance
� Inheritance

� Definition of new types based on other

predefined types

� Leads to type (or class) hierarchy

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Leads to type (or class) hierarchy

� Type: type name and list of visible (public)
functions

� Format:
• TYPE_NAME: function, function, ...,

function

Type Hierarchies and

Inheritance (cont’d.)
� Subtype

� Useful when creating a new type that is similar

but not identical to an already defined type

� Example:

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Example:
• EMPLOYEE subtype-of PERSON: Salary,

Hire_date, Seniority

• STUDENT subtype-of PERSON: Major, Gpa

Type Hierarchies and

Inheritance (cont’d.)
� Extent

� Store collection of persistent objects for each

type or subtype

� Extents are subsets of the extent of class

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Extents are subsets of the extent of class

OBJECT

� Persistent collection

� Stored permanently in the database

� Transient collection

� Exists temporarily during the execution of a

program

Other Object-Oriented Concepts

� Polymorphism of operations

� Also known as operator overloading

� Allows same operator name or symbol to be

bound to two or more different implementations

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

bound to two or more different implementations

� Depending on type of objects to which operator

is applied

� Multiple inheritance

� Subtype inherits functions (attributes and

methods) of more than one supertype

Other Object-Oriented Concepts

(cont’d.)
� Selective inheritance

� Subtype inherits only some of the functions of a

supertype

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Summary of Object Database

Concepts
� Object identity

� Type constructor

� Encapsulation of operations

� Programming language compatibility

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Programming language compatibility

� Type hierarchies and inheritance

� Extents

� Polymorphism and operator overloading

Object-Relational Features:

Object Database Extensions to

SQL
� Type constructors

� Specify complex objects

� Mechanism for specifying object identity

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Mechanism for specifying object identity

� Encapsulation of operations

� Provided through user-defined types (UDTs)

� Inheritance mechanisms

� Provided using keyword UNDER

User-Defined Types and

Complex Structures for Objects
� UDT syntax:

� CREATE TYPE TYPE_NAME AS

(<component declarations>);

� ROW TYPE

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� ROW TYPE

� Directly create a structured attribute using the
keyword ROW
phone_no ROW (

area_code char (3),

prefix_no char (3),

number char (4),

),

User-Defined Types and

Complex Structures for Objects

(cont’d.)
� Array type

� Reference elements using []

� CARDINALITY function

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� CARDINALITY function

� Return the current number of elements in an

array

Object Identifiers Using

Reference Types
� Reference type

� Create unique system-generated object

identifiers

� Examples:

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Examples:
• REF IS SYSTEM GENERATED

• REF IS <OID_ATTRIBUTE>

<VALUE_GENERATION_METHOD> ;

• Generation methods: SYSTEM GENERATED or
DERIVED

Creating Tables Based on the

UDTs
� INSTANTIABLE

� Specify that UDT is instantiable

� Causes one or more tables to be created

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Encapsulation of Operations

� User-defined type

� Specify methods (or operations) in addition to

the attributes

� Format:

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Format:
CREATE TYPE <TYPE-NAME> (

<LIST OF COMPONENT ATTRIBUTES AND THEIR TYPES>

<DECLARATION OF FUNCTIONS (METHODS)>

);

Encapsulation of Operations

(cont’d.)
� Constructor function TYPE_T()

� Returns a new object of that type

� Observer function A implicitly created for
each attribute A

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

each attribute A

� A(X) or X.A return the of attribute A

� User defined functions can internal (SQL)
or external

� External functions written in a host language

Specifying Inheritance and

Overloading of Functions
� Inheritance rules:

� All attributes inherited

� Order of supertypes in UNDER clause

determines inheritance hierarchy

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

determines inheritance hierarchy

� Instance of a subtype can be used in every

context in which a supertype instance used

� Subtype can redefine any function defined in

supertype

� NOT FINAL: subtypes are allowed to be

defined

Specifying Inheritance and

Overloading of Functions

(cont’d.)
� When a function is called, best match selected

based on types of all arguments

� For dynamic linking, runtime types of

parameters is considered

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

parameters is considered

Specifying Relationships via

Reference
� Component attribute of one tuple may be a

reference to a tuple of another table

� Specified using keyword REF

� Keyword SCOPE: Specify name of table whose

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

SCOPE:

tuples referenced (e.g, FK)

� Dot notation: Build path expressions

� –> Used for dereferencing

SELECT E.Employee -> Name

FROM EMPLOYMENT AS E

WHERE E.Company -> Name = ‘Microsoft’;

The ODMG Object Model and the

Object Definition Language ODL
� ODMG object model

� Data model for object definition language

(ODL) and object query language (OQL)

� Objects and Literals

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Objects and Literals

� Basic building blocks of the object model

� Object has five aspects:

� Identifier, name, lifetime, structure, and

creation

� Literal

� Value that does not have an object identifier

The ODMG Object Model and

the ODL (cont’d.)

� Behavior refers to operations

� State refers to properties

� Interface

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Interface

� Specifies only behavior of an object type

� Typically noninstantiable

� Class

� Specifies both state (attributes) and behavior

(operations) of an object type

� Instantiable

Inheritance in the Object Model

of ODMG
� Behavior inheritance

� Also known as IS-A or interface inheritance

� Specified by the colon (:) notation

� EXTENDS inheritance

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� EXTENDS inheritance

� Specified by keyword extends

� Inherit both state and behavior strictly among

classes

� Multiple inheritance via extends not permitted

Built-in Interfaces and Classes in

the Object Model
� Collection objects

� Inherit the basic Collection interface

� I = O.create_iterator()

� Creates an iterator object for the collection

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Creates an iterator object for the collection

� Collection objects further specialized into:

� set, list, bag, array, and dictionary

Built-in Interfaces and Classes in

the Object Model (cont’d.)

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Atomic (User-Defined) Objects

� Specified using keyword class in ODL

� Attribute

� Property; describes some aspect of an object

� Relationship

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Relationship

� Two objects in the database are related

� Keyword inverse

• Single conceptual relationship in inverse directions

� Operation signature:

� Operation name, argument types, return value

Extents, Keys, and Factory

Objects
� Extent

� Contains all persistent objects of class

� Key

� One or more properties whose values are

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� One or more properties whose values are

unique for each object in extent

� Factory object

� Used to generate or create individual objects

via its operations

The Object Definition Language

ODL
� Support semantic constructs of ODMG

object model

� Independent of any particular programming
language

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

language

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

Object Database Conceptual

Design
� Differences between conceptual design of

ODB and RDB, handling of:

� Relationships

� Inheritance

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Inheritance

� Philosophical difference between relational
model and object model of data

� In terms of behavioral specification

Mapping an EER Schema to an

ODB Schema
� Create ODL class for each EER entity type

� Add relationship properties for each binary
relationship

� Include appropriate operations for each

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Include appropriate operations for each
class

� ODL class that corresponds to a subclass
in the EER schema

� Inherits type and methods of its superclass in

ODL schema

Mapping an EER Schema to an

ODB Schema (cont’d.)
� Weak entity types

� Mapped same as regular entity types

� Categories (union types)

� Difficult to map to ODL

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Difficult to map to ODL

� An n-ary relationship with degree n > 2

� Map into a separate class, with appropriate

references to each participating class

The Object Query Language

OQL
� Query language proposed for ODMG object

model

� Simple OQL queries, database entry points,
and iterator variables

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

and iterator variables

� Syntax: select ... from ... where ... structure

� Entry point: named persistent object

� Iterator variable: define whenever a collection

is referenced in an OQL query

Query Results and Path

Expressions
� Result of a query

� Any type that can be expressed in ODMG

object model

� OQL orthogonal with respect to specifying

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� OQL orthogonal with respect to specifying
path expressions

� Attributes, relationships, and operation names

(methods) can be used interchangeably within

the path expressions

Other Features of OQL

� Named query

� Specify identifier of named query

� OQL query will return collection as its result

� If user requires that a query only return a single

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� If user requires that a query only return a single
element use element operator

� Aggregate operators

� Membership and quantification over a
collection

Other Features of OQL (cont’d.)

� Special operations for ordered collections

� Group by clause in OQL

� Similar to the corresponding clause in SQL

� Provides explicit reference to the collection of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

� Provides explicit reference to the collection of

objects within each group or partition

� Having clause

� Used to filter partitioned sets

Overview of the C++ Language

Binding in the ODMG Standard
� Specifies how ODL constructs are mapped

to C++ constructs

� Uses prefix d_ for class declarations that

deal with database concepts

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

deal with database concepts

� Template classes

� Specified in library binding

� Overloads operation new so that it can be used

to create either persistent or transient objects

Summary

� Overview of concepts utilized in object
databases

� Object identity and identifiers; encapsulation of

operations; inheritance; complex structure of

Copyright © 2011 Ramez Elmasri and Shamkant Navathe

operations; inheritance; complex structure of

objects through nesting of type constructors;

and how objects are made persistent

� Description of the ODMG object model and
object query language (OQL)

� Overview of the C++ language binding

