
© 2010, University of Colombo School of Computing

Concurrency Control

Dr. Jeevani Goonetillake

© 2010, University of Colombo School of Computing

Slide 18- 2

Database Concurrency Control

• 1 Purpose of Concurrency Control
– To enforce Isolation (through mutual exclusion)

among conflicting transactions.
– To preserve database consistency through

consistency preserving execution of transactions.
– To resolve read-write and write-write conflicts.

• Example:
– In concurrent execution environment if T1 conflicts

with T2 over a data item A, then the existing
concurrency control decides if T1 or T2 should get the
A and if the other transaction is rolled-back or waits.

© 2010, University of Colombo School of Computing

Classification of Techniques:

1. Locking data items to prevent multiple transactions from
accessing the items concurrently; a number of locking
protocols have been proposed.

2. Use of timestamps. A timestamp is a unique identifier
for each transaction, generated by the system.

3. Multiversion concurrency control protocols that use
multiple versions of a data item.

4. Optimistic Concurrency Control: based on the concept
of validation or certification of a transaction after it
executes its operations; these are sometimes called
optimistic protocols.

© 2010, University of Colombo School of Computing

Locking
• A lock: a variable associated with a data

item that describes the status of the item
with respect to possible operations that
can be applied to it.

• Generally, there is one lock for each data
item in the database.

• Granularity of locking varies : typically
rows or sets of rows. An entire relation
may be locked, or an entire database.

© 2010, University of Colombo School of Computing

Types of Locks
• Binary locks: only two states of a lock;

too simple and too restrictive; not used in
practice.

• Shared/exclusive locks: which provide
more general locking capabilities and are
used in practical database locking
schemes. (Read Lock as a shared lock,
Write Lock as an exclusive lock).

• Certify lock: used to improve
performance of locking protocols.

© 2010, University of Colombo School of Computing

Binary Locks

A binary lock can have two states or values:
locked and unlocked (or 1 and 0, for simplicity).

A binary lock enforces mutual exclusion on the data item;
i.e., at a time only one transaction can hold a lock.

A distinct lock is associated with each database item X. If the
value of the lock on X is 1, item X cannot be accessed by a
database operation that requests the item.

If the value of the lock on X is 0, the item can be accessed when
requested.

© 2010, University of Colombo School of Computing

Binary Locks

If LOCK (X) = 1, the transaction is forced to wait.

If LOCK(X) = 0, it is set to 1 (the transaction locks the item)
and the transaction is allowed to access item X.

unlock_item(X) : sets LOCK(X) to 0 (unlocks the item) so
that X may be accessed by other transactions.

© 2010, University of Colombo School of Computing

Binary Locking Scheme
Every transaction must obey the following rules. Rules are

enforced by the LOCK MANAGER
1. A transaction T must issue the operation lock_item(X)

before any read_item(X) or write_item(X) operations
are performed in T.

2. A transaction T must issue the operation unlock_item(X)
after all read_item(X) and write_item(X) operations
are completed in T.

3. A transaction T will not issue a lock_item(X) operation
if it already holds the lock on item X.

4. A transaction T will not issue an unlock_item(X)
operation on X unless it already holds the lock on item X.

© 2010, University of Colombo School of Computing

Slide 18- 9

Binary Locks
The following code performs the lock operation:

B: if LOCK (X) = 0 (*item is unlocked*)
then LOCK (X) ← 1 (*lock the item*)
else begin
wait (until lock (X) = 0) and
the lock manager wakes up the transaction);

goto B
end;

© 2010, University of Colombo School of Computing

Slide 18- 10

Binary Locks

The following code performs the unlock
operation:

LOCK (X) ← 0 (*unlock the item*)
if any transactions are waiting then
wake up one of the waiting the transactions;

© 2010, University of Colombo School of Computing

Shared/Exclusive (or Read/Write)
locks

• A lock associated with an item X,LOCK(X), now
has three possible states:

“read-locked,” “write-locked,” or “unlocked.”
• A read-locked item is also called share-locked,

because other transactions are allowed to read
the item.

• A write-locked item is called exclusive-locked,
because a single transaction exclusively holds
the lock on the item.

© 2010, University of Colombo School of Computing

Slide 18- 12

Shared/Exclusive (or Read/Write)
locks

– Two locks modes:
• (a) shared (read) (b) exclusive (write).

– Conflict matrix
Read Write

R
ead W

rite

N

NN

Y

© 2010, University of Colombo School of Computing

Slide 18- 13

Shared/Exclusive (or Read/Write)
locks

The following code performs the read operation:

B: if LOCK (X) = “unlocked” then

begin LOCK (X) ← “read-locked”;
no_of_reads (X) ← 1;

end
else if LOCK (X) ← “read-locked” then

no_of_reads (X) ← no_of_reads (X) +1
else begin wait (until LOCK (X) = “unlocked” and

the lock manager wakes up the transaction);
go to B

end;

© 2010, University of Colombo School of Computing

Slide 18- 14

Shared/Exclusive (or Read/Write)
locks

The following code performs the write lock
operation:

B: if LOCK (X) = “unlocked”

then LOCK (X) ← “write-locked”;
else begin

wait (until LOCK (X) = “unlocked” and
the lock manager wakes up the transaction);
go to B

end;

© 2010, University of Colombo School of Computing

Slide 18- 15

Shared/Exclusive (or Read/Write)
locks

The following code performs the unlock operation:
if LOCK (X) = “write-locked” then
begin LOCK (X) ← “unlocked”;

wakes up one of the transactions, if any
end
else if LOCK (X) ← “read-locked” then

begin
no_of_reads (X) ← no_of_reads (X) -1
if no_of_reads (X) = 0 then
begin

LOCK (X) = “unlocked”;
wake up one of the transactions, if any

end
end;

© 2010, University of Colombo School of Computing

Shared/Exclusive (or Read/Write)
locks

RULES FOR Read/Write LOCKS

1. A transaction T must issue the operation read_lock(X) or
write_lock(X) before any read_item(X) operation is performed in T.

2. A transaction T must issue the operation write_lock(X) before any
write_item(X) operation is performed in T.

3. A transaction T must issue the operation unlock(X) after
all read_item(X) and write_item(X) operations are completed in T.

© 2010, University of Colombo School of Computing

Shared/Exclusive (or Read/Write)
locks

4. A transaction T will not issue a read_lock(X) operation if it
already holds a read (shared) lock or a write (exclusive) lock on
item X.
(EXCEPTIONS: DOWNGRADING OF LOCK from WRITE TO
READ)

5. A transaction T will not issue a write_lock(X) operation if it already
holds a read (shared) lock or write (exclusive) lock on item X.
(EXCEPTIONS: UPGRADING OF LOCK FROM READ TO WRITE)

6. A transaction T will not issue an unlock(X) operation unless it
already holds a read (shared) lock or a write (exclusive) lock on item
X.

© 2010, University of Colombo School of Computing

Slide 18- 18

Lock conversion
– Lock upgrade: existing read lock to write lock

if Ti has a read-lock (X) and Tj has no read-lock (X) (i
≠ j) then

convert read-lock (X) to write-lock (X)
else

force Ti to wait until Tj unlocks X

– Lock downgrade: existing write lock to read lock
Ti has a write-lock (X) (*no transaction can have any lock

on X*)
convert write-lock (X) to read-lock (X)

© 2010, University of Colombo School of Computing

Slide 18- 19

Database Concurrency Control
T1 T2 Result

read_lock (Y); read_lock (X); Initial values: X=20;
Y=30
read_item (Y); read_item (X); Result of serial
execution
unlock (Y); unlock (X); T1 followed by T2
write_lock (X); Write_lock (Y); X=50, Y=80.
read_item (X); read_item (Y); Result of serial
execution
X:=X+Y; Y:=X+Y; T2 followed by T1
write_item (X); write_item (Y); X=70, Y=50
unlock (X); unlock (Y);

© 2010, University of Colombo School of Computing

Slide 18- 20

Database Concurrency Control

T1 T2 Result
read_lock (Y); X=50; Y=50
read_item (Y);
unlock (Y);

read_lock (X);
read_item (X);
unlock (X);
write_lock (Y);
read_item (Y);
Y:=X+Y;
write_item (Y);
unlock (Y);

write_lock (X);
read_item (X);
X:=X+Y;
write_item (X);
unlock (X);

Time

© 2010, University of Colombo School of Computing

Slide 18- 21

Two-Phase Locking Techniques

• Two Phases:
– (a) Locking (Growing)
– (b) Unlocking (Shrinking).

• Locking (Growing) Phase:
– A transaction applies locks (read or write) on desired data

items one at a time.
• Unlocking (Shrinking) Phase:

– A transaction unlocks its locked data items one at a time.
• Requirement:

– For a transaction these two phases must be mutually
exclusively, that is, during locking phase unlocking phase
must not start and during unlocking phase locking phase
must not begin.

© 2010, University of Colombo School of Computing

Slide 18- 22

Two-Phase Locking Techniques

T’1 T’2

read_lock (Y); read_lock (X); T1 and T2 follow two-
phase
read_item (Y); read_item (X); policy but they are
subject to
write_lock (X); Write_lock (Y); deadlock, which must
be
unlock (Y); unlock (X); dealt with.
read_item (X); read_item (Y);
X:=X+Y; Y:=X+Y;
write_item (X); write_item (Y);
unlock (X); unlock (Y);

© 2010, University of Colombo School of Computing

Slide 18- 23

Two-Phase Locking Techniques
• Conservative:

– Prevents deadlock by locking all desired data items
before transaction begins execution.

• Basic:
– Transaction locks data items incrementally. This may

cause deadlock which is dealt with.
• Strict:

– A stricter version of Basic, where X-unlocking is
performed after a transaction terminates (commits or
aborts and rolled-back). This is the most commonly
used two-phase locking algorithm.

• Rigorous:
– Like s2PL, but all unlocking is performed upon

termination.

© 2010, University of Colombo School of Computing

Limitations Of 2 PL

1. The two-phase locking protocol guarantees
serializability but it does not permit all possible
serializable schedules.

2. Use of locks can cause two additional
problems: deadlock and starvation.

© 2010, University of Colombo School of Computing

Slide 18- 25

Deadlock

– Deadlock
T’1 T’2

read_lock (Y); T1 and T2 did follow
two-phase
read_item (Y); policy but they are
deadlock

read_lock (X);
read_item (Y);

write_lock (X);
(waits for X) write_lock (Y);

(waits for Y)

– Deadlock (T’1 and T’2)

© 2010, University of Colombo School of Computing

Slide 18- 26

Deadlock

Deadlock prevention
– A transaction locks all data items it refers to

before it begins execution.
– This way of locking prevents deadlock since a

transaction never waits for a data item.
– The conservative two-phase locking uses this

approach.

© 2010, University of Colombo School of Computing

Slide 18- 27

Deadlock

• Deadlock detection and resolution
– In this approach, deadlocks are allowed to happen.

The scheduler maintains a wait-for-graph for detecting
cycle. If a cycle exists, then one transaction involved
in the cycle is selected (victim) and rolled-back.

– A wait-for-graph is created using the lock table. As
soon as a transaction is blocked, it is added to the
graph. When a chain like: Ti waits for Tj waits for Tk
waits for Ti or Tj occurs, then this creates a cycle.

© 2010, University of Colombo School of Computing

Slide 18- 28

Deadlock
• Deadlock avoidance

– There are many variations of two-phase
locking algorithm.

– Some avoid deadlock by not letting the cycle
to complete.

– That is as soon as the algorithm discovers that
blocking a transaction is likely to create a
cycle, it rolls back the transaction.

– Wound-Wait and Wait-Die algorithms use
timestamps to avoid deadlocks by rolling-back
victim.

© 2010, University of Colombo School of Computing

Slide 18- 29

Stravation
– Starvation occurs when a particular transaction

consistently waits or restarted and never gets a
chance to proceed further.

– In a deadlock resolution it is possible that the same
transaction may consistently be selected as victim and
rolled-back.

– This limitation is inherent in all priority based
scheduling mechanisms.

– In Wound-Wait scheme a younger transaction may
always be wounded (aborted) by a long running older
transaction which may create starvation.

© 2010, University of Colombo School of Computing

Slide 18- 30

Timestamp

– A monotonically increasing variable (integer)
indicating the age of an operation or a
transaction. A larger timestamp value
indicates a more recent event or operation.

– Timestamp based algorithm uses timestamp to
serialize the execution of concurrent
transactions.

© 2010, University of Colombo School of Computing

Slide 18- 31

Timestamp based concurrency
control algorithm

Basic Timestamp Ordering
– 1. Transaction T issues a write_item(X) operation:

• If read_TS(X) > TS(T) or if write_TS(X) > TS(T), then an
younger transaction has already read the data item so abort
and roll-back T and reject the operation.

• If the condition in part (a) does not exist, then execute
write_item(X) of T and set write_TS(X) to TS(T).

– 2. Transaction T issues a read_item(X) operation:
• If write_TS(X) > TS(T), then an younger transaction has

already written to the data item so abort and roll-back T and
reject the operation.

• If write_TS(X) ≤ TS(T), then execute read_item(X) of T and
set read_TS(X) to the larger of TS(T) and the current
read_TS(X).

© 2010, University of Colombo School of Computing

Slide 18- 32

Strict Timestamp Ordering

1. Transaction T issues a write_item(X)
operation:

If TS(T) > read_TS(X), then delay T until the
transaction T’ that wrote or read X has terminated
(committed or aborted)

2. Transaction T issues a read_item(X)
operation:

If TS(T) > write_TS(X), then delay T until the
transaction T’ that wrote or read X has terminated
(committed or aborted).

© 2010, University of Colombo School of Computing

Slide 18- 33

Thomas’s Write Rule
– If read_TS(X) > TS(T) then abort and roll-back

T and reject the operation.
– If write_TS(X) > TS(T), then just ignore the

write operation and continue execution. This
is because the most recent writes counts in
case of two consecutive writes.

– If the conditions given in 1 and 2 above do not
occur, then execute write_item(X) of T and set
write_TS(X) to TS(T).

© 2010, University of Colombo School of Computing

Slide 18- 34

Validation (Optimistic) Concurrency
Control Schemes

In this technique only at the time of commit serializability
is checked and transactions are aborted in case of non-
serializable schedules.

• Three phases:
1. Read phase
2. Validation phase
3. Write phase

1. Read phase:
– A transaction can read values of committed data

items. However, updates are applied only to local
copies (versions) of the data items (in database
cache).

© 2010, University of Colombo School of Computing

Slide 18- 35

2. Validation phase: Serializability is checked before
transactions write their updates to the database.
– This phase for Ti checks that, for each transaction Tj that

is either committed or is in its validation phase, one of
the following conditions holds:

• Tj completes its write phase before Ti starts its read
phase.

• Ti starts its write phase after Tj completes its write
phase, and the read_set of Ti has no items in
common with the write_set of Tj

Validation (Optimistic) Concurrency Control
Schemes

© 2010, University of Colombo School of Computing

Slide 18- 36

• Both the read_set and write_set of Ti have no items in
common with the write_set of Tj, and Tj completes its read
phase.

• When validating Ti, the first condition is checked first for each
transaction Tj, since (1) is the simplest condition to check. If
(1) is false then (2) is checked and if (2) is false then (3) is
checked. If none of these conditions holds, the validation fails
and Ti is aborted.

3. Write phase: On a successful validation
transactions’ updates are applied to the
database; otherwise, transactions are restarted.

Validation (Optimistic) Concurrency
Control Schemes

© 2010, University of Colombo School of Computing

Slide 18- 37

Granularity of data items and Multiple
Granularity Locking

• A lockable unit of data defines its granularity. Granularity
can be coarse (entire database) or it can be fine (a tuple
or an attribute of a relation).

• Data item granularity significantly affects concurrency
control performance. Thus, the degree of concurrency is
low for coarse granularity and high for fine granularity.

• Example of data item granularity:
1. A field of a database record (an attribute of a tuple)
2. A database record (a tuple or a relation)
3. A disk block
4. An entire file
5. The entire database

© 2010, University of Colombo School of Computing

Slide 18- 38

Granularity of data items and Multiple
Granularity Locking

• The following diagram illustrates a
hierarchy of granularity from coarse
(database) to fine (record).

DB

f1 f2

p11 p12 ... p1n

r111 ... r11j r111 ... r11j r111 ... r11j r111 ... r11j r111 ... r11j r111 ... r11j

p11 p12 ... p1n

© 2010, University of Colombo School of Computing

Slide 18- 39

Granularity of data items and Multiple
Granularity Locking

To manage such hierarchy, in addition to read and
write, three additional locking modes, called
intention lock modes are defined:
– Intention-shared (IS): indicates that a shared lock(s)

will be requested on some descendent nodes(s).
– Intention-exclusive (IX): indicates that an exclusive

lock(s) will be requested on some descendent node(s).
– Shared-intention-exclusive (SIX): indicates that the

current node is locked in shared mode but an
exclusive lock(s) will be requested on some
descendent nodes(s).

© 2010, University of Colombo School of Computing

Slide 18- 40

Granularity of data items and
Multiple Granularity Locking

Granularity of data items and Multiple Granularity Locking
• These locks are applied using the following compatibility

matrix:

IS IX S SIX X
yes yes yes yes no
yes yes no no no
yes no yes no no
yes no no no no
no no no no no

IS
IX
S
SIX
X

Intention-shared (IS
Intention-exclusive (IX)
Shared-intention-exclusive
(SIX)

© 2010, University of Colombo School of Computing

Slide 18- 41

Granularity of data items and
Multiple Granularity Locking

• The set of rules which must be followed for producing serializable
schedule are
1. The lock compatibility must adhered to.
2. The root of the tree must be locked first, in any mode.
3. A node N can be locked by a transaction T in S or IX mode only if

the parent node is already locked by T in either IS or IX mode.
4. A node N can be locked by T in X, IX, or SIX mode only if the

parent of N is already locked by T in either IX or SIX mode.
5. T can lock a node only if it has not unlocked any node (to enforce

2PL policy).
6. T can unlock a node, N, only if none of the children of N are

currently locked by T.

© 2010, University of Colombo School of Computing

Granularity of data items and
Multiple Granularity Locking

• T1 wants to update record r111 and record
r211.

• T2 wants to update all records on page p12.
• T3 wants to read record r11j and the entire

f2 file.

© 2010, University of Colombo School of Computing

Slide 18- 43

Granularity of data items and Multiple
Granularity Locking

T1 T2 T3
IX(db)
IX(f1)

IX(db)
IS(db)
IS(f1)
IS(p11)

IX(p11)
X(r111)

IX(f1)
X(p12)

S(r11j)
IX(f2)
IX(p21)
IX(r211)
Unlock (r211)
Unlock (p21)
Unlock (f2)

S(f2)

© 2010, University of Colombo School of Computing

Slide 18- 44

Granularity of data items and Multiple
Granularity Locking

T1 T2 T3
unlock(p12)
unlock(f1)
unlock(db)

unlock(r111)
unlock(p11)
unlock(f1)
unlock(db)

unlock (r111j)
unlock (p11)
unlock (f1)
unlock(f2)
unlock(db)

