
© 2008, University of Colombo School of Computing

Data Storage and Querying

Dr G.N.Wikramanayake
Dr Jeevani Goonetillake
University of Colombo School of Computing

© 2008, University of Colombo School of Computing

user a user i/program j program x

sub-schema a sub-schema i sub-schema z

Conceptual Schema

Physical Schema

Data
bases

DBMS

File 1

File 2
File 1

File 3

File 2

A 10
B 20
C 30

60

© 2008, University of Colombo School of Computing

Name (20 characters) Address (40 characters)

NID (10 char) Designation (15 char)

database

A.B.C. De Silva |222, Galle Road, Colombo |

650370690V|Senior Lecturer

Employee record

Physical View
• The DBMS must

know
– exact physical location
– precise physical

structure

© 2008, University of Colombo School of Computing

File

• A collection of data records with similar
characteristics

• Student list, course list at the university
• price list, stock records at a supermarket

Item# Description Shelf# Max Stock Reorder Balance
1152 Milk D01 100 25 70
1167 Bread D01 70 25 30
1175 Sugar G02 300 50 120
1172 Rice G04 50 20 35

© 2008, University of Colombo School of Computing

Physical Design

• Provide good
performance
– Fast response time
– Minimum disk

accesses

© 2008, University of Colombo School of Computing

Disk Assembly
Cylinder

Track

Sector
(disk block)

Access time = seek time + rotational delay + transfer time

Read/write
head

Central axle

Head
Assembly

Protective
surface

Data
surface

© 2008, University of Colombo School of Computing

Disks

• 6 disks (platters); 12 surfaces; 2 outer protected
surfaces; 10 inner data surfaces (coated with a
magnetic substance to record data)

• Each surface 200-400 concentric tracks
• Read/write heads placed over specific track; with

one active at a time
• Set of corresponding tracks is a cylinder, i.e.

track I of all 10 surfaces

© 2008, University of Colombo School of Computing

Disks

© 2008, University of Colombo School of Computing

© 2008, University of Colombo School of Computing

Data Block

• A data block (sector) is the smallest unit of
data defined within the database.

• block size may be defined by the
DB_BLOCK_SIZE

© 2008, University of Colombo School of Computing

Definitions

• Seek time
– Average time to move the read-write head to

the correct cylinder
• Rotational delay

– Average time for the sector to move under the
read-write head

• Transfer time
– Time to read a sector and transfer the data to

memory

© 2008, University of Colombo School of Computing

More Definitions

• Logical Record
– The data about an entity (a row in a table)

• Physical Record
– A sector, page or block on the storage

medium
• Typically several logical records can be

stored in one physical record.

© 2008, University of Colombo School of Computing

File Organization Techniques

• Three techniques
– Serial or Heap (unordered)
– Sorted

• Sequential (SAM)
• Indexed Sequential (ISAM)

– Hashed or Direct or Random

© 2008, University of Colombo School of Computing

Serial

• Used for temporary files such as
transaction files, dump files

Transaction# Item# Description Quantity
101 1152 Milk 01
101 1167 Bread 02
102 1167 Bread 01
102 1175 Sugar 01
103 1172 Rice 01
103 1152 Milk 01

© 2008, University of Colombo School of Computing

Heap File

ID Company Industry Symbl. Price Earns. Dividnd.
1767 Tony Lama Apparel TONY 45.00 1.50 0.25
1152 Lockheed Aero LCH 112.00 1.25 0.50
1175 Ford Auto F 88.00 1.70 0.20
1122 Exxon Oil XON 46.00 2.50 0.75
1231 Intel Comp. INTL 30.00 2.00 0.00
1323 GM Auto GM 158.00 2.10 0.30
1378 Texaco Oil TX 230.00 2.80 1.00
1245 Digital Comp. DEC 120.00 1.80 0.10

Tony Lama was the first record added,
Digital was the last.

© 2008, University of Colombo School of Computing

Heap File Characteristics

• Insertion
– Fast: New records added at the end of the file

• Retrieval
– Slow: A sequential search is required

• Update - Delete
– Slow:

• Sequential search to find the page
• Make the update or mark for deletion
• Re-write the page

© 2008, University of Colombo School of Computing

Sequential

• Records are recoded in key sequence, but
have no index

• Used for master files in a normal batch
processing

Item# Description Price
1152 Milk 35.00
1167 Bread 30.00
1172 Rice 60.00
1175 Sugar 50.00

© 2008, University of Colombo School of Computing

Sequential (Ordered) File

ID Company Industry Symbl. Price Earns. Dividnd.
1122 Exxon Oil XON 46.00 2.50 0.75
1152 Lockheed Aero LCH 112.00 1.25 0.50
1175 Ford Auto F 88.00 1.70 0.20
1231 Intel Comp. INTL 30.00 2.00 0.00
1245 Digital Comp. DEC 120.00 1.80 0.10
1323 GM Auto GM 158.00 2.10 0.30
1378 Texaco Oil TX 230.00 2.80 1.00
1480 Conoco Oil CON 150.00 2.00 0.50
1767 Tony Lama Apparel TONY 45.00 1.50 0.25

© 2008, University of Colombo School of Computing

Sequential Access

1122...other data

1152 ...

1175...

1231...

© 2008, University of Colombo School of Computing

Sequential File Characteristics
• Older media (cards, tapes)
• Records physically ordered by primary key
• Use when direct access to individual records

is not required
• Accessing records

– Sequential search until record is found
• Binary search can speed up access

– Must know file size and how to determine mid-
point,

© 2008, University of Colombo School of Computing

Search Sugar

• Sequence of file based on Description
• 4 sequential accesses to reach sugar
• 2 binary search accesses to reach

sugar
Description Price
Bread 30.00
Milk 35.00
Rice 60.00
Sugar 50.00
Water 20.00

1
2
3
4

1
2

© 2008, University of Colombo School of Computing

© 2008, University of Colombo School of Computing

Inserting Records in SAM files

• Insertion
– Slow:

• Sequential search to find where the record goes
• If sufficient space in that page, then rewrite
• If insufficient space, move some records to next

page
• If no space there, keep bumping down until space

is found
– May use an “overflow” file to decrease time

© 2008, University of Colombo School of Computing

Deletions and Updates to SAM
• Deletion

– Slow:
• Find the record
• Either mark for deletion or free up the space
• Rewrite

• Updates
– Slow:

• Find the record
• Make the change
• Rewrite

© 2008, University of Colombo School of Computing

Binary Search to Find GM (1323)
ID Company Industry Symbl. Price Earns. Dividnd.
1122 Exxon Oil XON 46.00 2.50 0.75
1152 Lockheed Aero LCH 112.00 1.25 0.50
1175 Ford Auto F 88.00 1.70 0.20
1231 Intel Comp. INTL 30.00 2.00 0.00

1. 1245 Digital Comp. DEC 120.00 1.80 0.10
3. 1323 GM Auto GM 158.00 2.10 0.30
2. 1378 Texaco Oil TX 230.00 2.80 1.00

1480 Conoco Oil CON 150.00 2.00 0.50
1767 Tony Lama Apparel TONY 45.00 1.50 0.25

• Takes 3 accesses as opposed to 6 for linear search.

© 2008, University of Colombo School of Computing

Indexed Sequential
• Disk (usually)
• Records physically ordered by primary key
• Index gives physical location of each record
• Records accessed sequentially or directly

via the index
• The index is stored in a file and read into

memory when the file is opened.
• Indexes must be maintained

© 2008, University of Colombo School of Computing

Indexed Sequential Access

• Given a value for the key
– search the index for the record address
– issue a read instruction for that address
– Fast: Possibly just one disk access

© 2008, University of Colombo School of Computing

Indexed Sequential Access: Fast

Key Cyl. Trck Sect.
279-66-7549 3 10 2
452-75-6301 3 10 3
789-12-3456 3 10 4

777-13-1212 < 789-12-3456
Search Cyl. 3, Trck 10, Sect. 4
sequentially.

222-66-7634
255-75-5531
279-66-7549
333-88-9876
382-32-0658
452-75-6301
701-43-5634
777-13-1212
789-12-3456

Find record with key 777-13-1212

© 2008, University of Colombo School of Computing

Inserting into ISAM files

• Not very efficient
– Indexes must be updated
– Must locate where the record should go
– If there is space, insert the new record and

rewrite
– If no space, use an overflow area
– Periodically merge overflow records into file

© 2008, University of Colombo School of Computing

Deletion and Updates for ISA
• Fairly efficient

– Find the record
– Make the change or mark for deletion
– Rewrite
– Periodically remove records marked for

deletion

© 2008, University of Colombo School of Computing

Use ISAM files when:

• Both sequential and direct access is needed.
• Say we have a retail application like Foley’s.
• Customer balances are updated daily.
• Usually sequential access is more efficient

for batch updates.
• But we may need direct access to answer

customer questions about balances.

© 2008, University of Colombo School of Computing

Random

• Randomly organized file contains records
stored without regard to the sequence of
their control fields.

• Records are stored in some convenient
order establishing a direct link between the
key of the record and the physical address
of that record

© 2008, University of Colombo School of Computing

Direct or Hashed Access
• A portion of disk space is reserved
• A “hashing” algorithm computes record

address

Hashing
Algorithm

455-72-3566
Address

Overflow
376-87-3425

Address

© 2008, University of Colombo School of Computing

Hashed Access Characteristics

• No indexes to search or maintain
• Very fast direct access
• Inefficient sequential access
• Use when direct access is needed, but

sequential access is not
• Data cannot be sorted easily

© 2008, University of Colombo School of Computing

A query typically has many possible execution strategies
and the process of choosing a suitable one for
processing a query is known as query optimisation.

The job of the heuristic query optimiser is to transform this
initial query tree into a final query tree that is efficient to
execute.

The optimiser must include rules for equivalence among
relational algebra expressions that can be applied to the
initial tree, guided by the heuristic query optimisation
rules to produce the final optimised query tree.

Query Optimization

© 2008, University of Colombo School of Computing

Execution strategy - The DBMS must then devise
an execution strategy for retrieving the result of the
query from the internal database files.

Query code generator - According to the chosen
execution plan, the code generator generates the
code to execute the plan.

Runtime database processor - The runtime
database processor has the task of running the query
code (compiled or interpreted) to produce the query
result. If a runtime error occurs the runtime database
processor generates an error message.

© 2008, University of Colombo School of Computing

Translating SQL Queries into Relational
Algebra
SELECT p.pno, d.dno, e.ename
FROM Project as p, Department as d, Employee as e
WHERE d.dno=p.dept and d.mgr=e.empno and

p.location=‘Colombo’;
T1 Project ∞dno=dept Department
T2 T1 ∞mgr=empno Employee
T3 σlocation=‘Colombo’(T2)
Result πpno, dno, ename(T3)

JOIN Project and Department over dno=dept giving T1
JOIN T1 and Employee over mgr=empno giving T2
RESTRICT T2 where location=‘Colombo’ giving T3
PROJECT T3 over pno, dno, ename giving Result

© 2008, University of Colombo School of Computing

Queries in Relational Algebra

Equivalent Queries

(a) Result πpno, dno, ename (σlocation=‘Colombo’ (
(Project ∞dno=dept Department) ∞mgr=empno
Employee))

(b) T1 σlocation=‘Colombo’(Project)
T2 T1 ∞dno=dept Department
T3 T2 ∞mgr=empno Employee
Result πpno, dno, ename(T3)

© 2008, University of Colombo School of Computing

Basic algorithms for executing query
operations

• Each DBMS typically has a number of general
database access algorithms that implement
relational operations such as SELECT or
JOIN or combinations of these operations.

• The query optimisation module will consider
only execution strategies that can be
implemented by the DBMS access algorithms
(i.e. storage structures and access paths).

© 2008, University of Colombo School of Computing

Sorting is one of the primary algorithms used in
query processing.

For example, whenever an SQL query
specifies an ORDER BY clause, the query
result must be sorted.

Sorting is also a key component in sort-merge
algorithms used for JOIN and other
operations (such as UNION and
INTERSECTION), and in duplicate
elimination algorithms for the PROJECT
operation (when an SQL query specifies the
DISTINCT option in the SELECT clause).

© 2008, University of Colombo School of Computing

There are many options for executing a
SELECT operation.

A number of searching algorithms are
possible for selecting records from a file.

Linear search (brute force), binary search,
using a primary index or hash key,
clustering index and using secondary
index (B-tree) on an equality comparison
are examples of searching.

© 2008, University of Colombo School of Computing

Selecting Records, e.g.

• Primary index (records ordered on a key field)

T1 σempno=‘12345’(Employee) (single record)

T1 σdno>=‘5’(Department) (multiple records)

• Clustering Index (records ordered on a non key field)
T1 σdno=‘5’(Employee) (multiple records)

• B+-Tree Index (secondary index on equality comparison)
T1 σsalary>=30000 and salary<=35000(Employee) (multiple records)

© 2008, University of Colombo School of Computing

Using Heuristics in Query Optimisation

• There are two main techniques for query
optimisation: heuristic rules and systematic
estimating.

• Heuristic rules are used to order the operations in a query
execution strategy. The rules typically reorder the operations
in a query tree or determine an order for executing the
operations specified by a query graph.

• Systematic estimating is used to cost the different execution
strategies and to choose the execution plan with the lowest
cost estimate.

• Both strategies are usually combined in a query optimiser.

© 2008, University of Colombo School of Computing

Transformation rules for relational algebra
operations
• There are many rules for transforming relational

algebra operations into equivalent ones.
• These are in addition to those discussed under

relational algebra.
• These rules are used in heuristic optimisation.
• Algorithms that utilise these rules are used to

transform an initial query tree into an optimised
tree that is more efficient to execute.

• Here we look at some examples that demonstrate
such transformations.

© 2008, University of Colombo School of Computing

Rule 1 (cascade of σ)
Break up any SELECT operations (σ) with

conjunctive conditions (AND) into a
cascade (sequence) of individual SELECT
operations.

σc1 AND c2 AND … AND cn (R) ≡ σc1 (σc2 (…(σcn (R))…))

This permits a greater degree of freedom in
moving SELECT operations down different
branches of the tree.

© 2008, University of Colombo School of Computing

Rule 2 (commutative of σ)
The SELECT operation is commutative

σc1 (σc2 (R)) ≡ σc2 (σc1 (R))

Rule 3 (commutative of σ with π)
If the SELECT condition c involves only attributes

a1, a2, …, an in the PROJECTION list, the two
operations can be commuted.

πa1, a2, …, an (σc (R)) ≡ σc (πa1, a2, …, an (R))

© 2008, University of Colombo School of Computing

Rule 4 (commutative of σ with X or ∞)
If all the attributes in the selection condition c involve

only the attributes of one of the relations being
joined (say R) the two operations can be
commuted as

σc (R∞S) ≡ (σc (R)) ∞S

Alternatively if the selection condition c can be written as c1
and c2, where c involves only the attributes of S, the
operations commute as

σc (R∞S) ≡ (σc1 (R)) ∞ (σc2 (S))

The same rules apply if the ∞ is replaced by a X operation.

© 2008, University of Colombo School of Computing

Rule 5 (commuting σ with set operations)
The σ operation commutes with ∪, ∩ and −. If θ

stands for any one of these 3 operations then

σc (RθS) ≡ (σc (R)) θ (σc (S))

Using rules 2, 3, 4, and 5 concerning the
commutative of SELECT with other operations,
move each SELECT operation as far down the
query tree as is permitted by the attributes
involved in the select condition.

The objective is to reduce the number of tuples that
appear in the Cartesian product.

© 2008, University of Colombo School of Computing

SELECT lname
FROM Employee, WorksOn, Project
WHERE pname=’Aquarius’ and pnumber=pno and essn=ssn

and bdate>’31/12/1957’;

(a) initial query tree
2

250,000,000

2,500,000 100

5,000 500

σ pname=’Aquarius’ and
pnumber=pno and essn=ssn and

bdate>’31/12/1957’

π lname
|

Employee WorksOn

ProjectX

|
X

Depending on
the capacity of
the memory
intermediate
records may
have to be
written to disk.
Thus increase
total Read/Write
operations.

© 2008, University of Colombo School of Computing

(b) Moving σ operation down the query
tree

|

σ pnumber=pno

π lname
|

Employee

WorksOn

Project
X

|
X

σ pname=’Aquarius’
|

σ essn=ssn

σ bdate>’31/12/1957’
|

2

100

100 1

500,000 100

1,000

500

5,000

© 2008, University of Colombo School of Computing

(c) Applying the more restrictive σ operation
first

2

5,000
5 1,000

500

1 5,000

500
100

|

σ essn=ssn

π lname
|

Project

WorksOn

Employee
X

|
X

σ bdate>’31/12/1957’
|

σ pnumber=pno

σ pname=’Aquarius’
|

Use the information that pname is a unique attribute of Project relation.

© 2008, University of Colombo School of Computing

(d) Replacing Cartesian product and Select with
Join operations

2
1,000

5

1

5000
500

100

π lname
|

Project

WorksOn

Employee

σ bdate>’31/12/1957’
|

∞ pnumber=pno

σ pname=’Aquarius’
|

∞ essn=ssn

© 2008, University of Colombo School of Computing

(e) Moving Project operation (π) down the query
tree

∞ essn=ssn

π lname
|

Project

WorksOn

Employee

σ bdate>’31/12/1957’
|

∞ pnumber=pno

σ pname=’Aquarius’
|

|
π ssn, lname

|
π essn

π essn, pnoπ pnumber
| |

Sub query

© 2008, University of Colombo School of Computing

Using Selectivity and Cost Estimates in
Query Optimisation

A query optimiser should not depend solely on
heuristic rules, it should also estimate and
compare the costs of executing a query using
different execution strategies and should choose
the strategy with the lowest cost estimate.

• Cost components
• Cost functions
• Examples

© 2008, University of Colombo School of Computing

Cost Components for Query Execution

• Access cost to secondary storage
– Cost of searching for, reading and writing data

blocks that reside on secondary storage.
– Cost of searching depends on access file structures

such as ordering, hashing, indexes. Also based on
how data are allocated on disk.

• Storage cost
– Cost of storing any intermediate files that are

generated by an execution strategy for the query

© 2008, University of Colombo School of Computing

Cost Components …

• Computation cost
– Cost of performing in-memory operations on the

data buffers during query execution. E.g.
searching, sorting, merging for join, performing
computations on field values.

• Memory usage cost
– Cost pertaining to the number of memory buffers

needed during query execution.

• Communication cost
– Cost of sending the query and its results from

database server to client.

© 2008, University of Colombo School of Computing

Catalog Information used in Cost Functions
• nr - number of tuples in relation r
• sr - size of tuple in relation r
• br - number of blocks containing tuples of r
• fr - blocking factor – number of tuples of relation r that fit

into one block
• xa - number of levels of each multilevel index on attribute

a .
• da,r - number of distinct values in relation r for attribute a.

da,r = nr = πa(r) if a is unique
• sa,r - Selection cardinality of attribute a of relation r –

average number records satisfying equality condition. If
a is unique da,r = nr, sa,r = 1 else (if uniformly distributed),
sa,r = nr/da,r

© 2008, University of Colombo School of Computing

Cost Functions for SELECT

• Linear Search
– Retrieve all file blocks; cost = br
– For equal condition on average cost = br/2 if found

else cost = br

• Binary Search
– Search access cost = log2 br + (sa,r/ fr) – 1
– If unique attribute average cost = log2 br

• Using a primary / secondary key index
– Cost = xa + 1

• Using a hash key
– Cost ≈ 1

