
Data Storage, Indexing

© 2010, University of Colombo School of Computing

Dr. Jeevani Goonetillake

File Organization and Storage Structures

Primary Storage (Main Memory)

• Fast

• Volatile

© 2010, University of Colombo School of Computing

• Expensive

Secondary Storage (Files in disks or tapes)

• Non-Volatile

Disk Storage Devices

• Preferred secondary storage device for high

storage capacity and low cost.

• Data stored as magnetized areas on magnetic

disk surfaces.

• A disk pack contains several magnetic disks

© 2010, University of Colombo School of Computing

• A disk pack contains several magnetic disks

connected to a rotating spindle.

• Disks are divided into concentric circular

tracks on each disk surface. Track capacities

vary typically from 4 to 50 Kbytes.

Disk Storage Devices

• Since a track usually contains a large amount of

information, it is divided into smaller blocks or

sectors.

© 2010, University of Colombo School of Computing

• The block size B is fixed for each system.

• Typical block sizes range from B=512 bytes to

B=4096 bytes. Whole blocks are transferred

between disk and main memory for processing.

Disk Storage Devices

© 2010, University of Colombo School of Computing

Disk Storage Devices

• A read-write head moves to the track that contains

the block to be transferred.

• Disk rotation moves the block under the readwrite

head for reading or writing.

© 2010, University of Colombo School of Computing

head for reading or writing.

• Reading or writing a disk block is time consuming

because of the seek time s and rotational delay

(latency) rd.

Blocking

• Blocking: refers to storing a number of records in

one block on the disk.

• Blocking factor (bfr) refers to the number of

records per block.

© 2010, University of Colombo School of Computing

records per block.

• There may be empty space in a block if an integral

number of records do not fit in one block.

Files of Records

• A file is a sequence of records, where each record is a

collection of data values (or data items).

• A file descriptor (or file header) includes information

that describes the file, such as the field names and their

© 2010, University of Colombo School of Computing

that describes the file, such as the field names and their

data types, and the addresses of the file blocks on disk.

• Records are stored on disk blocks. The blocking factor

bfr for a file is the (average) number of file records

stored in a disk block.

Operation on Files

• OPEN: Readies the file for access, and associates a

pointer that will refer to a current file record at each

point in time.

• FIND: Searches for the first file record that satisfies a

certain condition, and makes it the current file record.

© 2010, University of Colombo School of Computing

• FINDNEXT: Searches for the next file record (from

the current record) that satisfies a certain condition, and

makes it the current file record.

• READ: Reads the current file record into a program

variable.

• INSERT: Inserts a new record into the file, and makes

it the current file record.

Operation on Files

• DELETE: Removes the current file record from the

file, usually by marking the record to indicate that it is

no longer valid.

• MODIFY: Changes the values of some fields of the

current file record.

© 2010, University of Colombo School of Computing

• CLOSE: Terminates access to the file.

• REORGANIZE: Reorganizes the file records. For

example, the records marked deleted are physically

removed from the file or a new organization of the file

records is created.

• READ_ORDERED: Read the file blocks in order of a

specific field of the file.

Unordered Files

• Also called a heap or a pile file.

• New records are inserted at the end of the file.

• To search for a record, a linear search through
the file records is necessary. This requires
reading and searching half the file blocks on the

© 2010, University of Colombo School of Computing

reading and searching half the file blocks on the
average, and is hence quite expensive.

• Record insertion is quite efficient.

• To delete a record, the record is marked as
deleted. Space is reclaimed during periodical
reoganization.

Ordered Files

• Also called a sequential file.

• File records are kept sorted by the values of an ordering

field.

• Insertion is expensive: records must be inserted in the

correct order.

© 2010, University of Colombo School of Computing

correct order.

• A binary search can be used to search for a record on its

ordering field value. This requires reading and searching

log2 of the file blocks on the average, an improvement

over linear search.

• Reading the records in order of the ordering field is quite

efficient.

Ordered Files

© 2010, University of Colombo School of Computing

Average Access Times

The following table shows the average access time to access a specific record

for a given type of file

© 2010, University of Colombo School of Computing

Hashed Files

• The file blocks are divided into M equal-sized buckets,
numbered bucket0, bucket1, ..., bucket M-1.

• One of the file fields is designated to be the hash key of
the file.

© 2010, University of Colombo School of Computing

• The record with hash key value K is stored in bucket i,
where i=h(K), and h is the hashing function.

• Search is very efficient on the hash key.

• Collisions occur when a new record hashes to a bucket
that is already full. An overflow file is kept for storing
such records.

Hashed Files

• There are numerous methods for collision resolution,
including the following:

Open addressing: Proceeding from the occupied
position specified by the hash address, the program
checks the subsequent positions in order until an unused
(empty) position is found.

© 2010, University of Colombo School of Computing

Chaining: A collision is resolved by placing the new
record in an unused overflow location and setting the
pointer of the occupied hash address location to the
address of that overflow location.

Multiple hashing: The program applies a second hash
function if the first results in a collision.

Hashed Files

• The hash function h should distribute the records

uniformly among the buckets; otherwise, search

time will be increased because many overflow

records will exist.

© 2010, University of Colombo School of Computing

• Main disadvantages of static hashing:

Fixed number of buckets M is a problem if the

number of records in the file grows or shrinks.

Hashed Files

© 2010, University of Colombo School of Computing

Hashed Files
Limitation

• Inappropriate for some retrievals:

based on pattern matching

eg. Find all students with ID like 98xxxxxx.

• Involving ranges of values

© 2010, University of Colombo School of Computing

• Involving ranges of values

eg. Find all students from 50100000 to
50199999.

• Based on a field other than

the hash field

Indexes

• Index: A data structure that allows particular records in a
file to be located more quickly

~ Index in a book

• An index can be sparse or dense:

© 2010, University of Colombo School of Computing

• An index can be sparse or dense:

– Sparse: record for only some of the search key values

(eg. Staff Ids: CS001, EE001, MA001). Applicable to

ordered data files only.

– Dense: record for every search key value. (eg. Staff
Ids: CS001, CS002, .. CS089, EE001, EE002, ..)

Indexes

• Data file: a file containing the logical
records

• Index file: a file containing the index
records

© 2010, University of Colombo School of Computing

records

• Indexing field: the field used to order the
index records in the index file

Dense Index

–The index is usually specified on one
field of the file (although it could be
specified on several fields)
– One form of an index is a file of
entries <field value, pointer to

© 2010, University of Colombo School of Computing

entries <field value, pointer to
record>, which is ordered by field
value
– The index is called an access path

on the field.

Sparse Index

© 2010, University of Colombo School of Computing

• Defined on an ordered data file.

• The data file is ordered on a key field.

• Includes one index entry for each block in the data file;
the index entry has the key field value for the first record

Primary Index

© 2010, University of Colombo School of Computing

the index entry has the key field value for the first record
in the block, which is called the block anchor.

• A primary index is a nondense (sparse) index, since it
includes an entry for each disk block of the data file and
the keys of its anchor record rather than for every search
value.

© 2010, University of Colombo School of Computing

Clustering Index

• Defined on an ordered data file

• The data file is ordered on a non-key field unlike primary

index, which requires that the ordering field of the data file

have a distinct value for each record.

© 2010, University of Colombo School of Computing

have a distinct value for each record.

• Includes one index entry for each distinct value of the
field; the index entry points to the first data block that
contains records with that field value.

• It is another example of nondense index.

© 2010, University of Colombo School of Computing

© 2010, University of Colombo School of Computing

Secondary Index

• A secondary index provides a secondary means of
accessing a file for which some primary access already
exists.

• The secondary index may be on a field which is a
candidate key and has a unique value in every record, or
a non-key with duplicate values.

© 2010, University of Colombo School of Computing

• The index is an ordered file with two fields.

• The first field is of the same data type as some non-
ordering field of the data file that is an indexing field.

• The second field is either a block pointer or a record
pointer.

Secondary Index

• There can be many secondary indexes (and hence,

indexing fields) for the same file.

• Includes one entry for each record in the data file; hence,

it is a dense index.

© 2010, University of Colombo School of Computing

it is a dense index.

© 2010, University of Colombo School of Computing

© 2010, University of Colombo School of Computing

© 2010, University of Colombo School of Computing

Multi-Level Indexes

• Since a single-level index is an ordered file, we can

create a primary index to the index itself;

• In this case, the original index file is called the first-level

index and the index to the index is called the second-
level index.

• We can repeat the process, creating a third, fourth, ...,

© 2010, University of Colombo School of Computing

• We can repeat the process, creating a third, fourth, ...,
top level until all entries of the top level fit in one disk
block.

• A multi-level index can be created for any type of first
level index (primary, secondary, clustering) as long as
the first-level index consists of more than one disk block.

© 2010, University of Colombo School of Computing

Multi-Level Indexes

• Such a multi-level index is a form of search tree.

• However, insertion and deletion of new index

entries is a severe problem because every level

© 2010, University of Colombo School of Computing

entries is a severe problem because every level

of the index is an ordered file.

Dynamic Multilevel Indexes Using B+-

Trees

• Most multi-level indexes use B+-tree data

structure because of the insertion and deletion problem

• This leaves space in each tree node (disk block) to allow
for new index entries

• The data structure is a variation of search trees that

© 2010, University of Colombo School of Computing

• The data structure is a variation of search trees that
allow efficient insertion and deletion of new search
values.

• In B+-Tree data structure, each node

corresponds to a disk block.

• Each node is kept between half-full and completely full

Dynamic Multilevel Indexes Using

B+-Trees

• An insertion into a node that is not full is quite

efficient.

• If a node is full the insertion causes a split into two

© 2010, University of Colombo School of Computing

• If a node is full the insertion causes a split into two

nodes.

• Splitting may propagate to other tree levels

Dynamic Multilevel Indexes Using

B+-Trees

• A deletion is quite efficient if a node does not

become less than half full.

• If a deletion causes a node to become less than

half full, it must be merged with neighboring

© 2010, University of Colombo School of Computing

half full, it must be merged with neighboring

nodes.

B+ tree

The structure of the internal nodes of a B+ tree

of order p is as follows:

• Each internal node is of the form

<P1,K1,P2, K2…..,Kq-1,Pq-1,Pq>

where q ≤ p. Each P is a tree pointer.

© 2010, University of Colombo School of Computing

where q ≤ p. Each Pi is a tree pointer.

• Within each node K1 < K2 < ….<Kq-1

• Each node has at most p tree pointers.

• Each node with q tree pointers, q ≤ p, has q-1

search key field values.

B+ tree

The structure of the leaf nodes of a B+ tree of

order p is as follows:

• Each leaf node is of the form

<K1,Pr1>,<K2,Pr2>,…..,<Kq-1,Prq-1>,Pnext>

where q ≤ p. Each Pr is a data pointer. P

© 2010, University of Colombo School of Computing

where q ≤ p. Each Pri is a data pointer. Pnext

points to the next leaf node of the B+ tree.

• Within each node K1 < K2 < ….<Kq-1

• All leaf nodes are at the same level.

© 2010, University of Colombo School of Computing

Difference between B-tree

and B+-tree

• In a B-tree, pointers to data records exist at all

levels of the tree.

© 2010, University of Colombo School of Computing

• In a B+-tree, all pointers to data records exists at

the leaf-level nodes.

• A B+-tree can have less levels (or higher capacity

of search values) than the corresponding B-tree.

© 2010, University of Colombo School of Computing

