
© 2008, University of Colombo School of Computing 1

Transaction Management

Dr G.N.Wikramanayake

Dr Jeevani Goonetillake
University of Colombo School of Computing

© 2008, University of Colombo School of Computing 2

• Concurrency control deals with influencing
how data can be viewed and updated by
users accessing the same information at
one time.

• Concurrency control allows users to use the
database concurrently without damaging the
transactions of other users.

• It supports and ensures the availability and
correct operations of simultaneous multiple
access in the database system.

Concurrency Control

© 2008, University of Colombo School of Computing 3

• Single user – at most one user at a time
can use the system. Restricted to some PC
DBMS.

• Multi-user – many users can use the
system concurrently (at the same time).
Most DBMS are multi-user. Airline
reservations systems, banks, insurance
agencies, stock exchanges are multi-user
systems operated concurrently.

Concurrency Control

© 2008, University of Colombo School of Computing 4

Multiple users can use computer systems
simultaneously because of the concept of
multiprogramming. When only one CPU, the
multiprogramming operating systems execute some
commands from one program, then suspend that
program and execute some commands from the
next program and so on. A program is resumed at
the point where it was suspended when it gets its
turn to use the CPU again. Hence, concurrent
execution of the program is actually interleaved.
Simultaneous processing of multiple programs are
done with multiple CPUs.

Multiprogramming

© 2008, University of Colombo School of Computing 5

Interleaved model of concurrent
execution

A A
B B

t1 t2

Single CPU

↑ ↑time

A

B

t1 t3

Multiple CPUs

↑ ↑time

© 2008, University of Colombo School of Computing 6

The basic unit of data transfer from the disk to the
computer memory is one block. For discussion
purpose, consider transactions at the level of
data item (field of some record in the database)
and disk blocks. At this level the database
access operations that a transaction can include
are

• READ(X) - reads database item X into a
program variable X;

• WRITE(X) - write the value of program variable
X into the database item X.

Database Access Operations

© 2008, University of Colombo School of Computing 7

• Executing a READ(X)
1. Find the address of the disk block that contains item X.
2. Copy that disk block into a buffer in main memory (if not

already in some main memory buffer).
3. Copy item X from the buffer to the program variable

named X.
• Executing a WRITE(X)

1. Find the address of the disk block that contains item X.
2. Copy that disk block into a buffer in main memory (if not

already in some main memory buffer).
3. Copy item X from the program variable named X into its

correct location in the buffer.
4. Store the updated block from the buffer back to disk

(either immediately or at some later point of time)

SELECT labmark INTO old_mark FROM enrol
WHERE studno = sno and courseno = cno
FOR UPDATE OF labmark;

UPDATE enrol SET labmark = new_mark
WHERE studno = sno and courseno = cno;

© 2008, University of Colombo School of Computing 8

• A transaction is an atomic unit of work that is either
completed in its entirety or not done at all. For recovery
purpose, the system needs to keep track of when the
transaction starts, terminates and commits or aborts. The
recovery manager keeps track of:

BEGIN marks the beginning of transaction execution
READ or WRITE read or write operations on the

database items that are executed.
END specifies that READ and WRITE transaction

operations have ended and mark the end of
transaction execution.

Transaction States and additional operations

© 2008, University of Colombo School of Computing 9

COMMIT signals a successful end of the transaction
so that any changes (updates) executed by the
transaction can be safely committed to the
database and will not be undone.

ROLLBACK (or ABORT) signals that the
transaction has ended unsuccessfully so that any
changes or effects that the transaction may have
applied to the database must be undone.

Transaction States and additional operations

© 2008, University of Colombo School of Computing 10

Atomicity - A transaction is an atomic unit of processing.
It is either performed in its entirety or not performed at
all.

Consistency preservation - A correct execution of the
transaction must take the database from one
consistent state to another

Isolation - A transaction should not make its updates
visible to other transactions until it is committed.

Durability or permanency - Once a transaction
changes the database and the changes are
committed, these changes must never be lost because
of subsequent failures.

Properties of Transactions

© 2008, University of Colombo School of Computing 11

e.g. Transfer 50
from account A
(A=1000) to B
(B= 2000)

T1: BEGIN
READ(A);
A = A – 50;
WRITE(A);
READ(B);
B = B + 50;
WRITE(B);

END;

A=950; B=2050;

Transaction Properties …
Consistency - take the database from one consistent state to
another

Value of A+B (3000) should be same before
transaction and after transaction
Atomicity - either performed in its entirety or not performed at all

Transaction failure after WRITE(A), but before
WRITE(B), then A=950; B=2000; i.e. 50 is lost
Data is now inconsistent as A+B is now 2950
Durability - changes must never be lost because of subsequent
failures

Recover database: remove changes of a partially
done transaction (A=1000; B=2000); reconstruct
completed transactions (A=950; B=2050)
Isolation - updates not visible to other transactions until
committed

Between WRITE(A) and WRITE(B) if second
transaction reads A and B it sees inconsistent data
as A+B = 2950

© 2008, University of Colombo School of Computing 12

E.g. Transaction T1 - No of reservations for airline A is X; No
of reservation for airline B is Y; N reservation from A is
cancelled and booked for B.
Transaction T2 - M reservations to airline A.

T1 T2
READ(X) READ(X)
X = X – N X = X + M
WRITE(X) WRITE(X)
READ(Y)
Y = Y + N
WRITE(Y)

Problems with Concurrent Use

Several problems can occur when
concurrent transactions execute in an
uncontrolled manner.

© 2008, University of Colombo School of Computing 13

This occurs when two transactions that access the same
database item have their operations interleaved in a way
that makes the value of some database item incorrect.
X=80; Y=100

T1 T2
READ(X) X = 80, N = 5, M = 4
X = X – N X = 75

READ(X) X = 80
X = X + M X = 84

WRITE(X) X = 75
READ(Y)

WRITE(X) X = 84
Y = Y + N Y = 105
WRITE(Y) T1: X+Y = 84+105=189

but X should be 80-5+4 = 79

1. The lost update problem

© 2008, University of Colombo School of Computing 14

This occurs when one transaction updates a database
item and then the transaction fails for some reason.

T1 T2
READ(X) X = 80, N = 5, M = 4
X = X – N X = 75
WRITE(X) X = 75

READ(X) X = 75
X = X + M X = 79
WRITE(X) X = 79

READ(Y)
ROLLBACK
- abort - changes X back to its original value gives X = 80

but should be 80+4 = 84

2. The temporary update (Dirty read) problem

© 2008, University of Colombo School of Computing 15

If one transaction is calculating an aggregate summary function on a
number of records while other transactions are updating some of these
records, the aggregate function may calculate some values before they
are updated and

T1 T2
sum = 0

READ(X)
X = X – N
WRITE(X)

READ(X)
sum = sum + X
READ(Y)
sum = sum + Y sum=X+Y=75+100=175

READ(Y)
Y = Y + M
WRITE(Y)

3. The incorrect summary problem

© 2008, University of Colombo School of Computing 16

Another problem that may occur is the unrepeatable
read where a transaction T2 reads an item twice
(i.e. X) and the item is changed by another
transaction (i.e. T1) between the two reads.

T1 T2
…..
READ(X) X=80

READ(X)
X = X – N …..
WRITE(X)

READ(X) X=75
….

4. Unrepeatable Read problem

© 2008, University of Colombo School of Computing 17

Set of rows that is read once might be
different due to insert of new record.

T1 T2
…..
SELECT X 3 records

INSERT(X)
…..
SELECT X 4 records

….

Phantom Phenomenon

© 2008, University of Colombo School of Computing 18

• Concurrency control deals with influencing how
data can be viewed and updated by users
accessing the same information simultaneously.
Do you want one user to view/change an order
that is being changed/viewed by another user?

• There are two classes of concurrency control:
(i) applies to read-only database access;
levels of isolation: dirty read, committed read,

repeatable read
(ii) applies to updating database records: serializable

Concurrency Control

© 2008, University of Colombo School of Computing 19

• Database server process reads from the
database table without checking for locks (let
this process look at dirty data). This can be
useful when the table is static; 100% accuracy
is not as important as speed and freedom from
contention; you cannot wait for locks to be
released.

SQL Syntax:
SET TRANSACTION ISOLATION LEVEL
READ UNCOMMITED;

All are possible {dirty read, non-repeatable, phantom}

Dirty Reads

© 2008, University of Colombo School of Computing 20

• Database server process reads rows from
the database after seeing that lock could be
acquired (do not let this process look at dirty
data). This can be useful for lookups;
queries; reports yielding general information
(e.g. month-ending sales analyses).

SQL Syntax:
SET TRANSACTION ISOLATION LEVEL
READ COMMITTED;

Dirty read not possible; non-repeatable & phantom possible

Committed Reads

© 2008, University of Colombo School of Computing 21

• Database server process puts locks on all rows
examined to satisfy the query (do not let other
processes change any of the rows I have
looked at until I am done). It can be used for
critical, aggregate arithmetic (e.g. account
balancing); coordinated lookups from several
tables (e.g. reservation systems).

SQL Syntax:
SET TRANSACTION ISOLATION LEVEL
REPEATABLE READ;

Dirty read and non-repeatable not possible; phantom possible

Repeatable Reads

© 2008, University of Colombo School of Computing 22

• Always guarantee correct execution of
transaction.

SQL Syntax:
SET ISOLATION TO SERIALZABLE;

All are not possible {Dirty read, non-repeatable, phantom}

Serializable

© 2008, University of Colombo School of Computing 23

• Concurrency control is enforced using
locking: database level; table level; page
level; row level; key level

• Database Level Locking: Other users
cannot access database. Database stores
exclusive. It can be used when executing a
large number of updates involving many
tables; archiving the database files for
backups; altering the structure of the
database.

Locking

© 2008, University of Colombo School of Computing 24

• Other users cannot modify the table. It can
be used to: avoid conflict with other users
during batch operations that affects most or
all of the rows of a table; avoid running out
of locks when running an operation as a
transaction; prevent users from updating a
table for a period of time; prevent access to
a table while altering its structure or creating
indexes.

Table Level Locking

© 2008, University of Colombo School of Computing 25

• Table Level Locking in Share Mode: Others
may SELECT from the table.

SQL Syntax:
LOCK TABLE table_name IN SHARE MODE

• Table Level Locking in Exclusive Mode:
Others may not SELECT from the table.

SQL Syntax:
LOCK TABLE table_name IN EXCLUSIVE
MODE

Table Level Locking

© 2008, University of Colombo School of Computing 26

• Unlocking a Table:
SQL Syntax: UNLOCK TABLE table_name
• Setting the Lock Mode:
• Wait forever for the lock to be released.
SQL Syntax: SET LOCK MODE TO WAIT
• Do not wait for lock to be released.
SQL Syntax: SET LOCK MODE TO NOT WAIT
• Wait 20 seconds for lock to be released.
SQL Syntax: SET LOCK MODE TO WAIT 20

Lock/Unlock

© 2008, University of Colombo School of Computing 27

Schedule (History) - A schedule S of n transactions T1, T2,
…, Tn is an order of the operations of the transactions
subject to the constraint that operation of Ti in S must
appear in the same order in which they occur in Ti.

Serial Schedules - For every transaction T participating in
the schedule, all the operations of T are executed
consecutively in the schedule. Otherwise the schedule is
called non-serial. Serial schedules are always correct.

Serializable - If two disjoint groups of the non-serial
schedules are equivalent to one of the serial schedules.
Otherwise non-serializable.

Serializability of Schedules

© 2008, University of Colombo School of Computing 28

• Protocols or set of rules are used to guarantee
serializability.

• locking data items to prevent multiple
transactions from accessing the item
concurrently.

• timestamps, where a unique identifier for each
transaction generated by the system.
[immediate update]

• multi-version, where multiple versions of a
data item is used. [shadow paging]

Guaranteeing Serializability

x√

© 2008, University of Colombo School of Computing 29

• Two types of locks:
– Binary – can have two states or values, Locked

and unlocked;
– Shared and Exclusive locks – read_locked item

is called shared locked; write_locked item is
called exclusive locked.

Locking Techniques

© 2008, University of Colombo School of Computing 30

• Guaranteeing Serializability by Two-phase
locking

• If all locking operations precede the first
unlock operation in the transaction such a
transaction can be divided into 2 phases

• Expanding or growing phase, where new
locks on items can be acquired but none can
be released and Shrinking phase, where
existing locks can be released but no new
locks can be acquired.

Two-phase locking

© 2008, University of Colombo School of Computing 31

• If every transaction in a schedule follows the two-
phase locking protocol the schedule is guaranteed
to be serializable, eliminating the need to test for
serializability of schedules any more.

• Locking can be used to solve the concurrency control
problems, but it can also lead to the problem of
deadlock.

• Deadlock - occurs when each of two or more
transactions are in a simultaneous wait state, each
of them waiting for others to release a lock before it
can proceed.

Two-phase locking

© 2008, University of Colombo School of Computing 32

T1 T2
read_lock(Y)
READ(Y)

read_lock(X)
READ(X)

….. …..
write_lock(X) wait

write_lock(Y) wait

Deadlock

© 2008, University of Colombo School of Computing 33

• Two main methods for dealing with the deadlock
problem: deadlock prevention and deadlock
detection & recovery.

Deadlock Prevention method
• Uses deadlock prevention protocol to ensure

that the system will never enter a deadlock
state.
– Each transaction locks all its data before it

begins execution.
– Either all requested data items are locked in one

step or none are locked.

Deadlock Handling

© 2008, University of Colombo School of Computing 34

Disadvantages:
• low data utilisation: many data items may be

locked but unused for a long period of time
• possible starvation: a transaction which

requires a number of data items for its
operation may find itself in a indefinite wait
state while at least one of the data items is
always locked by some other transaction.

Deadlock Prevention

© 2008, University of Colombo School of Computing 35

Allows the system to enter a deadlock state,
but examines the state of the system
periodically to detect whether a deadlock
has occurred.

If it has, the system attempts to recover from
the deadlock.

Deadlock Detection

© 2008, University of Colombo School of Computing 36

• Keep information about the current locks of
data items to different transactions, as well as
any outstanding locking request for data items.

• Invoke an algorithm which uses this information
to determine whether the system has entered a
deadlock state. A typical technique is to use
the Wait-for-Graph (WFG) and periodically
invoke an algorithm to search for cycles in the
graph. Each transaction involved in the cycle is
said to be deadlocked.

Deadlock Detection Process

© 2008, University of Colombo School of Computing 37

• The most common solution is rollback one or more
transactions so that the deadlock can be broken.

• Three issues are involved in deadlock recovery
– issue of choosing a victim - determine which

transaction(s) among a set of deadlocked transactions to
rollback to break the deadlock.

– Issue of rollback operation - determine how far the chosen
victim transaction should be rolled backed (total or
partial).

– Issue of starvation - avoid a situation where some
transaction may always be chosen as the victim due to
selections based on cost factors. This may prevent the
transaction from ever completing its job.

Recovery Aspects

© 2008, University of Colombo School of Computing 38

• Both methods may result in transaction
rollback

• both methods require overheads
• prevention method is commonly used if the

probability of the system entering a
deadlock state is relatively high

• Otherwise detection and recovery method
should be used

Comparison

© 2008, University of Colombo School of Computing 39

• Consider the following two schedules. If they are
executed as two serial schedules T1, T2 or T2, T1
then serializability is guarantee.

T1 T2
read_lock(Y) read_lock(X)
READ(Y) READ(X)
unlock(Y) unlock(X)
write_lock(X) write_lock(Y)
READ(X) READ(Y)
X = X + Y Y =X + Y
WRITE(X) WRITE(Y)
unlock(X) unlock(Y)

If initial values
X=20, Y=30 then

T1, T2 would
give X=50, Y=80

T2, T1 would
give X=70, Y=50.

Checking for Serializability

© 2008, University of Colombo School of Computing 40

• Assuming that there
are no techniques
used to guarantee
serializability (e.g.
two-phase locking is
nor used) If T1, T2
are executed
concurrently the
schedule will be
serializable only if it
gives the result one
of the above two
serial schedules.

Checking for Serializability

T2
read_lock(X)
READ(X)
unlock(X)
write_lock(Y)
READ(Y)
Y =X + Y
WRITE(Y)
unlock(Y)

E.g., the following schedule is
non-serializable.
T1
read_lock(Y)
READ(Y)
unlock(Y)

write_lock(X)
READ(X)
X = X + Y
WRITE(X)
unlock(X)

would give
X=50, Y=50

© 2008, University of Colombo School of Computing 41

Timestamp Ordering

Another method for determining the serializability. There is
no deadlock and no locks.

Basic idea is if a transaction A starts before transaction B
then A should behave as if it completed entirety before B
started – i.e. as a serial schedule.

Transaction A is assigned a unique timestamp TS(A)
before starting executing the transaction

Next Transaction B is assigned TS(B) where TS(A) < TS(B)
WRITE-TS(X) denotes the largest timestamp of any

transaction that executed WRITE(X) successfully
READ-TS(X) denotes the largest timestamp of any

transaction that executed READ(X) successfully

© 2008, University of Colombo School of Computing 42

Timestamp Ordering Protocol
Suppose transaction A issues READ(X)
• If TS(A) < WRITE-TS(X), then A needs to read a value of X that was

overwritten by another transaction say B [A should never be allowed to
see B’s updates]. Hence Rollback A.

• If TS(A) ≥ WRITE-TS(X), then READ(X) is executed and READ-
TS(X) = MAX{TS(A), READ-TS(X)}

Suppose transaction A issues WRITE(X)
• If TS(A) < READ-TS(X), then value of X that A is producing was

needed previously, and system assumed that it would never change [A
should never be allowed to update anything that B has already seen].
Hence Rollback A.

• If TS(A) < WRITE-TS(X), then attempting to write an obsolete value
of X [A should never be allowed to update anything that B has already
change]. Hence Rollback A.

• Otherwise WRITE(X) is executed and WRITE-TS(X) = MAX{TS(A),
WRITE-TS(X)}

© 2008, University of Colombo School of Computing 43

Timestamp Ordering Protocol

T1
READ(Y)

READ(X)
Z = X + Y

T2

READ(Y)
Y = Y – 500
WRITE(Y)

READ(X)
X = X + 500
WRITE (X)

READ-TS(X) WRITE-TS(X)
0 0

1 0

2 0

2 2

TS(T2)=2TS(T1)=1
READ-TS(Y) WRITE-TS(Y)

0 0
1 0
2 0

2 2

Both T1 and T2 are successfully completed. Similar to T1, T2

© 2008, University of Colombo School of Computing 44

Timestamp Ordering Protocol

T1
READ(X)

READ(Y)
Z = X + Y

T2

READ(Y)
Y = Y – 500
WRITE(Y)

READ(X)
X = X + 500
WRITE (X)

READ-TS(X) WRITE-TS(X)
0 0
1 0

1<2 Rollback

READ-TS(Y) WRITE-TS(Y)
0 0

2 0

2 2

T1 Rollback

TS(T2)=2TS(T1)=1

© 2008, University of Colombo School of Computing 45

Timestamp Ordering Protocol

There are schedules that are possible under
timestamp but not possible under two-
phase locking

There are schedules that are possible under
two-phase locking but not possible under
timestamp

© 2008, University of Colombo School of Computing 46

Recovery from Failure
• Three types of failures: transaction, system and

media failure. Recovery allows a database system
to recover from physical or software failures when
they occur in the system.

• If a transaction fails after executing some of its
operations but before executing all of them.
System failure, also called soft crash.
The volatile storage is destroyed (e.g. power
failure). This affects all transactions currently in
progress but do not cause damage to the
database.

© 2008, University of Colombo School of Computing 47

Types of Failures
1. A computer failure (system crash)

– A hardware or software error occurs in the
computer system during transaction execution.
E.g. Hardware error, internal memory lost.

2. A transaction or system error
– Some operation in the transaction may cause

the failure. E.g. integer overflow, division by
zero, erroneous parameter values, logical
programming error. User may interrupt using
control-C.

© 2008, University of Colombo School of Computing 48

Recovery from Failure
3. Local errors or exception conditions detected by

the transaction.
– During transaction execution, certain conditions

may occur tat necessitate cancellation of the
transaction. Done using programmed ABORT.
E.g. data value not found, insufficient account
balance.

4. Concurrency control enforcement.
– Concurrency control method may decide to abort the

transaction (e.g. violates serializability) or to be
restarted later (e.g. several transactions are in a state
of deadlock).

© 2008, University of Colombo School of Computing 49

Recovery from Failure
5. Disk failure

– Some disk blocks may lose their data (a read or
write malfunction a disk read/write head crash)
while reading or writing a transaction.

6. Physical problems and disasters
– Power or air-conditioning failure, fire, theft,

sabotages, overwriting disks or tapes by
mistake, mounting of a wrong tape.

Failure types 1-4 occur more commonly than
the types 5-6.

© 2008, University of Colombo School of Computing 50

Recovery via Reprocessing
• Go back to a known point and reprocess the

workload – periodically make copies of the
database (save).

• Keep a record of all transactions since the copy.
• When failure occurs restore the database from the

save and reprocess all transactions.
• This strategy is often infeasible, as same amount

of time is required (e.g. 24 hours).
• Also it is impossible to guarantee same order of

concurrent transactions.

© 2008, University of Colombo School of Computing 51

Recovery via Rollback / Rollforward

• Save results of transactions and when
failure occurs to recover
by removing changes (rollback) then
reapply the changes (rollforward).

• Here a log is kept. The log contains a
record of data changes in chronological
order.

© 2008, University of Colombo School of Computing 52

Recovery via Rollback / Rollforward
• At certain prescribed intervals. E.g. after

specified number of entries have been
written to the log the system automatically
takes a checkpoint.
- Physically write the contents of the database

buffers out to the physical database.
• Physically write a special checkpoint record

out to the physical log. This record gives a
list of all transactions that were in progress
at that time. i.e. T2-T3

© 2008, University of Colombo School of Computing 53

Transactions

Checkpoint
tc

System failure
tf

Time

Transaction

T1
T2

T3
T4

T5

© 2008, University of Colombo School of Computing 54

Recovery Process

• Recreate (or not destroy) the outputs of all
completed transactions.

• Abort all transactions in process at the time
of the failure.

• Remove database changes generated by
aborted transactions.

• Restart aborted transactions.

© 2008, University of Colombo School of Computing 55

When system restarts after a failure
– Using the checkpoint record identify all

transactions that were in progress at that time.
UNDO={T2, T3}. Initial REDO list is empty.
REDO={}.

– Search forward through the log starting from
the checkpoint record.

– If a “start” log entry is found for transaction T,
add T to the UNDO list.
E.g. T4, T5. UNDO={T2, T3, T4, T5}.

© 2008, University of Colombo School of Computing 56

– If a “commit” log entry is found for transaction T
move T from the UNDO list to the REDO list.
E.g. T2, T4. UNDO={T3, T5}, REDO={T2, T4}.

– When end of the log is reached, the UNDO and
REDO lists are identified.

– System now works backwards through the log,
undoing the transactions in the UNDO list and
then it works forward again redoing the
transactions in the REDO list.
i.e. rollback and rollforward.

© 2008, University of Colombo School of Computing 57

Recovery via Rollback / Rollforward
Possible data items of a log record: relative record no, transaction id,

reverse pointer, forward pointer, time, type of operation, object,
old values, new value.

1 OT1 0 2 11.42 START
2 OT1 1 4 11.43 MODIFY CUST143 Old New
3 OT2 0 8 11.46 START
4 OT1 2 5 11.47 MODIFY SPAA Old New
5 OT1 4 7 11.47 INSERT ORDER11 Value
6 CT1 0 9 11.48 START
7 OT1 5 0 11.49 COMMIT
8 OT2 3 0 11.50 COMMIT
9 CT1 6 10 11.51 MODIFY SPBB Old New
10 CT1 9 0 11.51 COMMIT

Log instances for OT1, OT2, CT1 transactions. Write-ahead log is
maintained.

© 2008, University of Colombo School of Computing 58

Recovery outline
• Recovery from transaction failures usually means

that the database is restored to some state from
the past so that correct state – close to the time of
failure – can be reconstructed from the past state.

The system recovery activity is carried out as part of
the system’s restart procedure.

Three main techniques for recovery from failures:
deferred update, immediate update, shadow
paging

© 2008, University of Colombo School of Computing 59

Deferred Update
• Do not update the database until after a

transaction reaches its commit point.
• Then updates are recorded in the database.
• If transaction fails to reach commit it will not

have changed the database in any way - no
need to undo the failed transactions.

Before update After update

© 2008, University of Colombo School of Computing 60

Deferred Update
Transactions

READ(A)
A = A-50
WRITE(A)
READ(B)
B = B+50
WRITE(B)
READ(C)
C = C-100
WRITE(C)

Log

<T1 start>
<T1, A, 950>
<T1, B, 2050>
<T1 commit>
<T2 start>
<T2, C, 600>
<T2 commit>

Database
A=1000; B=2000; C=700

A=950; B=2050

C=600

T1

T2

A=1000; B=2000

A=950; B=2050; C=700

A=950; B=2050; C=600

Update database when <COMMIT>

If fails at no REDO/UNDO required
REDO needed as some changes may not have been recorded

From what point to REDO?

© 2008, University of Colombo School of Computing 61

Deferred Update with Checkpoint
Log
<T0 commit>
<T1 start>
<checkpoint T1>
<T1, A, 950>
<T1, B, 2050>
<T1 commit>
<T2 start>
<T2, C, 600>
<T2 commit>
<T3 start>

Database

A=1000; B=2000; C=700

A=950; B=2050

C=600

A=1000; B=2000

A=950; B=2050; C=700

A=950; B=2050; C=600

Update database when <CHECKPOINT>
If fails at need to REDO/UNDO from CHECKPOINT

© 2008, University of Colombo School of Computing 62

Immediate Update
• Database may be updated by some operations

of a transaction before the transaction reaches
its commit point.

• These operations are typically recorded in the
log on disk by force-write before they are
applied to the database.

• If a transaction fails the effect of its operations
must be undone.

Before update After update

© 2008, University of Colombo School of Computing 63

Immediate Update

Log

<T1 start>
<T1, A, 1000, 950>
<T1, B, 2000, 2050>
<T1 commit>
<T2 start>
<T2, C, 700, 600>
<T2 commit>

Database
A=1000; B=2000; C=700

A=950
B=2050

C=600

A=1000; B=2000

A=950; B=2050; C=700

A=950; B=2050; C=600

Update database when <WRITE>

If fails at need to UNDO, but how far?

© 2008, University of Colombo School of Computing 64

Immediate Update with Checkpoint
Log
<T0 commit>
<T1 start>
<checkpoint T1>
<T1, A, 1000, 950>
<T1, B, 2000, 2050>
<T1 commit>
<T2 start>
<T2, C, 700, 600>
<T2 commit>
<T3 start>

Database
A=1000; B=2000; C=700

A=950
B=2050

C=600

A=1000; B=2000

A=950; B=2050; C=700

A=950; B=2050; C=600

Also Update database when <CHECKPOINT>

If fails at need to REDO/UNDO

© 2008, University of Colombo School of Computing 65

Shadow Paging
• The database management system keeps

more than one copy of a data item on disk.
• No need to undo a failed transaction, as the

original copy of the data is not lost or
changed.

Before update After update

Old copy of the db Old copy of the db
(to be deleted)

New copy of the db

© 2008, University of Colombo School of Computing 66

Multi-version

• Reads are never delayed. Reads never delay updates.
– if T2 asks for Read(X) when T1 has write(X) then T2 is given

access to previously committed version of X;
– if T2 asks for Write(X) when T1 has Read(X) then T2 is given

access to X
• It is never necessary to rollback a read-only transaction
• Deadlock is possible only between update transactions

– If T2 asks for Write(X) when T1 has Write(X) then T2 goes to
wait state

	Transaction Management
	Concurrency Control
	Concurrency Control
	Multiprogramming
	Interleaved model of concurrent execution
	Database Access Operations
	Transaction States and additional operations
	Transaction States and additional operations
	Properties of Transactions
	Transaction Properties …
	Problems with Concurrent Use
	1. The lost update problem
	2. The temporary update (Dirty read) problem
	3. The incorrect summary problem
	4. Unrepeatable Read problem
	Phantom Phenomenon
	Concurrency Control
	Dirty Reads
	Committed Reads
	Repeatable Reads
	Serializable
	Locking
	Table Level Locking
	Table Level Locking
	Lock/Unlock
	Serializability of Schedules
	Guaranteeing Serializability
	Locking Techniques
	Two-phase locking
	Two-phase locking
	Deadlock
	Deadlock Handling
	Deadlock Prevention
	Deadlock Detection
	Deadlock Detection Process
	Recovery Aspects
	Comparison
	Checking for Serializability
	Checking for Serializability
	Timestamp Ordering
	Timestamp Ordering Protocol
	Timestamp Ordering Protocol
	Recovery from Failure
	Types of Failures
	Recovery from Failure
	Recovery from Failure
	Recovery via Reprocessing
	Recovery via Rollback / Rollforward
	Recovery via Rollback / Rollforward
	Transactions
	Recovery Process
	Recovery via Rollback / Rollforward
	Recovery outline
	Deferred Update
	Deferred Update
	Deferred Update with Checkpoint
	Immediate Update
	Immediate Update
	Immediate Update with Checkpoint
	Shadow Paging
	Multi-version

