Data Storage, Indexing

Dr. Jeevani Goonetillake

© 2010, University of Colombo School of Computing @

File Organization and Storage Structures

Primary Storage (Main Memory)
* Fast
* Volatile
* Expensive

Secondary Storage (Files in disks or tapes)
* Non-Volatile

© “
? © 2010, University of Colombo School of Computing @
UCSC

Disk Storage Devices

* Preferred secondary storage device for high
storage capacity and low cost.

« Data stored as magnetized areas on magnetic
disk surfaces.

* A disk pack contains several magnetic disks
connected to a rotating spindle.

« Disks are divided into concentric circular
tracks on each disk surface. Track capacities
vary typically from 4 to 50 Kbytes.

© 2010, University of Colombo School of Computing @

Disk Storage Devices

« Since a track usually contains a large amount of
information, it is divided into smaller blocks or
sectors.

« The block size B is fixed for each system.

« Typical block sizes range from B=512 bytes to
B=4096 bytes. Whole blocks are transferred
between disk and main memory for processing.

© 2010, University of Colombo School of Computing @

Disk Storage Devices

sector (arc of a track)

(D) o
e -
T “'H.E
\ three sectors

two sectors
one seclor

- © 2010, University of Colombo School of Computing ;

(IIGSB w

Disk Storage Devices

* A read-write head moves to the track that contains
the block to be transferred.

 Disk rotation moves the block under the readwrite
head for reading or writing.

* Reading or writing a disk block is time consuming
because of the seek time s and rotational delay
(latency) rd.

© 2010, University of Colombo School of Computing @

Blocking

» Blocking: refers to storing a number of records in
one block on the disk.

 Blocking factor (bfr) refers to the number of
records per block.

« There may be empty space in a block if an integral
number of records do not fit in one block.

© 2010, University of Colombo School of Computing @

Files of Records

« Afile is a sequence of records, where each record is a
collection of data values (or data items).

A file descriptor (or file header) includes information
that describes the file, such as the field names and their
data types, and the addresses of the file blocks on disk.

« Records are stored on disk blocks. The blocking factor

bfr for a file is the (average) number of file records
stored in a disk block.

© 2010, University of Colombo School of Computing @
UCSC

Operation on Files

OPEN: Readies the file for access, and associates a
pointer that will refer to a current file record at each
point in time.

FIND: Searches for the first file record that satisfies a
certain condition, and makes it the current file record.
FINDNEXT: Searches for the next file record (from
the current record) that satisfies a certain condition, and
makes it the current file record.

READ: Reads the current file record into a program
variable.

INSERT: Inserts a new record into the file, and makes
it the current file record.

? © 2010, University of Colombo School of Computing @
UCSC

Operation on Files

DELETE: Removes the current file record from the
file, usually by marking the record to indicate that it is
no longer valid.

MODIFY: Changes the values of some fields of the
current file record.

CLOSE: Terminates access to the file.
REORGANIZE: Reorganizes the file records. For
example, the records marked deleted are physically
removed from the file or a new organization of the file
records is created.

READ ORDERED: Read the file blocks in order of a
specific field of the file.

© “
? © 2010, University of Colombo School of Computing @
UCSC

Unordered Files

Also called a heap or a pile file.
New records are inserted at the end of the file.

To search for a record, a linear search through
the file records is necessary. This requires
reading and searching half the file blocks on the
average, and is hence quite expensive.

Record insertion is quite efficient.

To delete a record, the record is marked as
deleted. Space is reclaimed during periodical
reoganization.

© 2010, University of Colombo School of Computing @

Ordered Files

Also called a sequential file.

File records are kept sorted by the values of an ordering
field.

Insertion is expensive: records must be inserted in the
correct order.

A binary search can be used to search for a record on its
ordering field value. This requires reading and searching
log2 of the file blocks on the average, an improvement
over linear search.

Reading the records in order of the ordering field is quite

© 2010, University of Colombo School of Computing @

Ordered Files

© 20

black n—1

FANE

55N HFRTHDATE JOB SALARY

SEX

Aaron, Ed

Abboit, Dians

Acneta, Manc

Adams, John

Adams, Rolin

Akerz, Jdan

Woods, BMariny

Viright, Fam

Viatt, Charlas

ZIrTETEr, Ehron

Average Access Times

The following table shows the average access time to access a specific record
for a given type of file

I.‘IE[E I-H FWEHEE ;EEH:.'.-: “I"'|!:i' Iﬁ“ EA’JE H“ UE'J:FJIEIHEF#

LT OfF CHINARIZATION ACCTA4/AEARCH MITHOR AVERAGE 11wl Tor ACvTad
A e, Jp o

Tear Unerdered) .'_l-.uuwin‘r-nl BT TLANCAT h
=il

Ll Fe bl s (N,

T Blriary s=rchi |ty o

© 2010, University of Colombo School of Computing @

Hashed Files

The file blocks are divided into M equal-sized buckets,
numbered bucketO, buckett, ..., bucket M-1.

Cr)]ne]c Iof the file fields is designated to be the hash key of
the file.

The record with hash key value K is stored in bucket i,
where i=h(K), and h is the hashing function.

Search is very efficient on the hash key.

Collisions occur when a new record hashes to a bucket
that is already full. An overflow file is kept for storing

SUcR records.
- © 2010, University of Colombo School of Computing @

Hashed Files

 There are numerous methods for collision resolution,
including the following:

Open addressing: Proceeding from the occupied
position specified by the hash address, the program
checks the subsequent positions in order until an unused
(empty) position is found.

Chaining: A collision is resolved by placing the new
record in an unused overflow location and setting the
pointer of the occupied hash address location to the
address of that overflow location.

Multiple hashing: The program applies a second hash
function if the first results in a collision.

(@j :
? © 2010, University of Colombo School of Computing @
UCSC

Hashed Files

* The hash function h should distribute the records
uniformly among the buckets; otherwise, search
time will be increased because many overflow
records will exist.

» Main disadvantages of static hashing:

Fixed number of buckets M is a problem if the
number of records in the file grows or shrinks.

© 2010, University of Colombo School of Computing @

Hashed Files

bucket 0

bucket 1

bucket 2

bucket 9

main
buckets
340
480
| record pointer
321
761
91
| record pointer
22
T2
522
| record pointer
393
89

| record pointer

U

overflow
buckets
= null
981 record pointer —l
record pointer =
182 record pointer)
C 652 record pointer -1
record pointer =
record pointer
(pointers are to records
within the overflow blocks)

nuil

Hashed Files
Limitation

 Inappropriate for some retrievals:
based on pattern matching
eg. Find all students with ID like 98xxxxxx.
* Involving ranges of values
eg. Find all students from 50100000 to

50199999.
tudentID | Tutorial d
« Based on a field other than s gk

the hash field 50195255 | T01 A
50194525 102 A

98076543 | TO1 | A+

&
? © 2010, University of Colombo School o
UCSC

Indexes

* Index: A data structure that allows particular records in a
file to be located more quickly

~ |ndex in a book
* An index can be sparse or dense:

— Sparse: record for only some of the search key values
(eg. Staff Ids: CS001, EE001, MAOO1). Applicable to
ordered data files only.

— Dense: record for every search key value. (eg. Staff
lds: CS001, CS002, .. CS089, EE001, EE002, ..)

© 2010, University of Colombo School of Computing @
UCSC

Indexes

« Data file: a file containing the logical
records

* Index file: a file containing the index
records

 Indexing field: the field used to order the
index records in the index file

é |
? © 2010, University of Colombo School of Computing @
UCSC

Dense Index

Dense Index

—The index is usually specified on one
field of the file (although it could be
specified on several fields)

— One form of an index is a file of
entries <field value, pointer to
record>, which is ordered by field
value

— The index is called an access path
on the field.

© 2010, University

10

Sequential File

¥

10

120

20

40

30] -

5o 2

60| -
ol -

80

90

100

110

120 .

30

40

50

60

90

100

Sparse Index

Sparse Index Sequential File
10 *10
30 4 20
50 - T

- —[30
70 | E“‘“x. 20
90 R“x S =5
110 .
130| \-\\\\ &0
150 “

AN /0

170| \ . 180
19D| . NS
210
230| \ N 100

© 2010, University of Colombo School of Computing @

Primary Index

Defined on an ordered data file.
The data file is ordered on a key field.

Includes one index entry for each block in the data file;
the index entry has the key field value for the first record
In the block, which is called the block anchor.

A primary index is a nondense (sparse) index, since it
iIncludes an entry for each disk block of the data file and
theI keys of its anchor record rather than for every search
value.

© 2010, University of Colombo School of Computing @
UCSC

Figure 14.1
Primary index on the ordering key field of
the file shown in Figure 13.7.

Y

e —
Index file
(<K(i), P(i)> entries)
Block anchor
primary key Blcck
value pointer
Aaron, Ed - ——-—
Adams, Jonn -
Alexander, Ed -
Allen, Troy -
Anderson, Zach -
Arnold, Mack - I—-‘

Wong, James

Wright, Pam

Data file
(Primaury
key field)
Name Ssn |Birth_date | Job | Salary | Sex
Aaron, Ed

Abbot, Diane

Acosta, Marc

Adams, John

Adams, Robin

Akers, lan

Alexander, Ed

Alfred, Bob

Allen, Sam

Allen, Troy

Anders, Keith

Anderson, Rob

Anderson, Zach

Angel, Joe

Archer, Sue

Arnold, Mack

Arnold, Steven

Atkins, Timothy

Wong, James

Wood, Donald

Woods, Manny

Wiright, Pam

Wyatt, Charles

Zimmer, Byron

Clustering Index

Defined on an ordered data file

The data file is ordered on a non-key field unlike primary
index, which requires that the ordering field of the data file
have a distinct value for each record.

Includes one index entry for each distinct value of the
field; the index entry points to the first data block that
contains records with that field value.

It is another example of nondense index.

© 2010, University of Colombo School of Computing @
UCSC

DATA FILE

(CLUSTERING
FIELD)
DEPTNUMBER NAME SSN JOB BIRTHDATE SALARY
1
1
1
2
2
INDEX FILE 3
(<K(i), P(i)=> entries)
3
3
CLUSTERING BLOCK
FIELD VALUE POINTER
3
1 e 3
2 < y
3 o 2
a -
5 . aang 5
6 .‘\ 5
8 -~ 5
5
6
6
6
6
6
8
8
8

[Figure 14.3
IClustering index with a
Iseparate block cluster
for each group of
records that share the
same value for the
clustering field.

Index file
(<K, P> entries)

(Clustering
field)

Data nile

NULL pointer|

NULL pointer|

NULL pointer

NULL pointer|

Clustering Block

field value pointer
1 -
2 -
8 -
4 -
5
S -
s -

NULL pointer

NULL pointer|

Dept_number Name | Ssn Job | Birth_date | Salary

1
1
1

Block pointer '—ﬁ
> =
2

Block pointer -—1
3 =
3
3
3

Block pointer -—

|

3

Block pointer -—1
a =
4

Block pointer .71
= =
5
5
5

Block pointer .71
= =
5
5
5

Block pointer -—

]

5

Block pointer -—1
a =
8
8

Block pointer -

| NULL pointer|

Secondary Index

A secondary index provides a secondary means of
accessing a file for which some primary access already
exists.

The secondary index may be on a field which is a
candidate key and has a unique value in every record, or
a non-key with duplicate values.

The index is an ordered file with two fields.

The first field is of the same data type as some non-
ordering field of the data file that is an indexing field.

The second field is either a block pointer or a record

pointer.
&) “
- © 2010, University of Colombo School of Computing @
UCSC

Secondary Index

« There can be many secondary indexes (and hence,
indexing fields) for the same file.

 Includes one entry for each record in the data file; hence,
it is a dense index.

© 2010, University of Colombo School of Computing @

Figure 14.4

A dense secondary index (with
block pointers) on a norordering
key field of a file.

Index file Data file
(<KD, P(i)> entries) Indexing field
(secondary
key field)
) Index Blpck = o
field value pointer —
- — o]
: : - 1
s : :
; . — 6
- — 15
g - - 3
P - 17
- 21
] ® : 1
10 - - =
11 - >
12 o
13 L e ; o4
14 * - 5
15 - - 20
16 . :
17 ° : a
18 . — 23
19 - 18
20 - 14
21 o
22 L P 12
23 . 5 -
24 b o 19
22

Data file
(Indexing field)

Dept_number | Name | Ssn | Job |Birth_date | Salary

3

Blocks of R 5

record "
pointers r

; T — 6

Index file

1111

1

K<K(i), P(i)> entries)
Field Block ITiT72
value pointer
- T

rrry

WA WM

e | =
[

I.
T 1 1

vy

B Y

RAR

Figure 14.5]
A secondary index (with record pointers) on a nonkey field implemented using one level
of indirection so that index entries are of fixed length and have unique field values

TABLE 14.2 PROPERTIES OF INDEX TYPES

TYpE NUMBER OF (FIRST-LEVEL) DENSE OR BLOCK ANCHORING ON
OF INDEX ENTRIES NONDENSE THE DATA FILE
INDEX
Primary Number of blocks in Nondense Yes
data file
Clustering Number of distinct index Nondense Yes/no®
field values
Secondary Number of records in Dense No
(key) data file
Secondary Number of records® or Dense or No
(nonkey) Number of distinct index field values® Nondense
Ves if every distinct value of the ordering field starts a new block; no otherwise.
"For option 1.

For options 2 and 3.

© 2010, University of Colombo School of Computing

D

Multi-Level Indexes

Since a single-level index is an ordered file, we can
create a primary index to the index itself,
In this case, the original index file is called the first-level

index and the index to the index is called the second-
level index.

We can repeat the process, creating a third, fourth, ...,
top level until all entries of the top level fit in one disk
block.

A multi-level index can be created for any type of first
level index (primary, secondary, clustering) as long as
the first-level index consists of more than one disk block.

© “
? © 2010, University of Colombo School of Computing @
UCSC

Two-level index

Second (top)
level

Figure 14.6

First (base)

Data file

Primary
key field

2

5

level
e) - |
8 [r—
15 -
24 -

8

12

15

21

24

29

35

36

39

41

LA

46

51

52

55

58

2 - J" 35 *—
35 - 39 -
55 - 44 P
85 - 51 o
——— 55 - |
63 o]
71 o
80 o

83

66

71

78

— 85

80

82

85

89

A two-level primary index resembling ISAM (Index Sequential Access Method) organization.

Multi-Level Indexes

« Such a multi-level index is a form of search tree.

« However, insertion and deletion of new index
entries is a severe problem because every level
of the index is an ordered file.

© 2010, University of Colombo School of Computing @
UCSC

Dynamic Multilevel Indexes Using B+-
Trees

« Most multi-level indexes use B+-tree data
structure because of the insertion and deletion problem

* This leaves space in each tree node (disk block) to allow
for new index entries

 The data structure is a variation of search trees that
allow efficient insertion and deletion of new search
values.

* In B+-Tree data structure, each node
corresponds to a disk block.
« Each node is kept between half-full and completely full

© “
? © 2010, University of Colombo School of Computing @
UCSC

Dynamic Multilevel Indexes Using
B+-Trees

* An insertion into a node that is not full is quite
efficient.

* |If a node is full the insertion causes a split into two
nodes.

« Splitting may propagate to other tree levels

© 2010, University of Colombo School of Computing @

Dynamic Multilevel Indexes Using
B+-Trees

* A deletion is quite efficient if a node does not
become less than half full.

e |f a deletion causes a node to become less than

half full, it must be merged with neighboring
nodes.

© 2010, University of Colombo School of Computing @

B+ tree

The structure of the internal nodes of a B+ tree
of order p is as follows:

Each internal node is of the form
<P, K{,Po, Koo, Ky 15 P15
where q < p. Each P, is a tree pointer.
Within each node K, < K; <<K ;
Each node has at most p tree pointers.

Each node with g tree pointers, g < p, has g-1
search key field values.

© 2010, University of Colombo School of Computing @

Pq>

B+ tree

The structure of the leaf nodes of a B+ tree of
order p is as follows:

 Each leaf node is of the form
<K{,Pri>,<Ky,Pro>,.... <Ky 4,

where q < p. Each Pr, is a data pointer. P
points to the next leaf node of the B+ tree.

* Within each node K; < K, <<Kg 4
 All leaf nodes are at the same level.

Prq_1>,Pnext>

© 2010, University of Colombo School of Computing @

P Ky Koo | P | K Ke-1 | 7o
» ! N
tree L ree tree
painter painter pointer
X /\ X
X <K K, <X<K Koot <X
(b) pointer to next
K, I:r K, I:’.r K fr K- F;'qw an o—>» leaf node
in tree
Y Y
data data data data
pointer pointer pointer pointer

(T VIV WINHVUIWVILY VI WWIVIIINGY WUITVWI Ui WWIlIuLiiny w

Difference between B-tree
and B+-tree

 In a B-tree, pointers to data records exist at all
levels of the tree.

* |In a B+-tree, all pointers to data records exists at
the leaf-level nodes.

« A B+-tree can have less levels (or higher capacity
of search values) than the corresponding B-tree.

© 2010, University of Colombo School of Computing @

Figure 14.12
An example of insertion in a B -tree with p = 3 and D = 2
Insertion sequence: 8,5, 1,7 3, 12,9, 6

| 5] < | | 8| o | -—— |nsert 1: overflow (new level)

E' Tree node pointer

- 5 T
& * El Data pointer
| | 1 | o I | 5| @ | e et -t Insert 7 D Null tree pointer

I "=

Lilo] [slo]|«t=| [7]o] [&]0]
+ Insert 12: overflow (split, propagates,

Insert 3: overflow - T El - new level)
(split) ﬁr i ¢
[1]o] [8]o]]|etm

== [7lo] [e]0]

—— |

* Insert Qﬂ

v
1]o] [3lo]|«p={ [5]2] = [zlo] [8lo]|e= [12]0]
v
[5]0]
v
(510

|t

|

v v

= L7lo] [8]o]|ej={[o]o|[12]0]

|t

Insert 6: overflow (split, propagates)

[3] |+ ,

——t |t

= l

|t

-t [6]o] [7[o] |ef=|[8]0] | Lelo][12]0]

1|o| [3] o] |eftm

