
Physical Database Design

and Tuning

© 2010, University of Colombo School of Computing

Dr. Jeevani Goonetillake

Objective

• Identify commonly asked queries, and typical update

operations, and adjust the design to improve performance

for the operations

identified.

© 2010, University of Colombo School of Computing

Database tuning – as user requirements evolve, we tune or

adjust all aspects of a database design for better

performance.

Overview
• After ER design, schema refinement, and the definition

of views, we have the logical and external schemas for

our database.

• The next step is to choose indexes and to refine the

conceptual and external schemas (if necessary) to meet

performance goals.

© 2010, University of Colombo School of Computing

performance goals.

• We must begin by understanding the workload:

– The most important queries and how often they arise.

– The most important updates and how often they arise.

– The desired performance for these queries and

updates.

Understanding the Workload
• For each query in the workload:

– Which relations does it access?

– Which attributes are retrieved?

– Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?

© 2010, University of Colombo School of Computing

selective are these conditions likely to be?

• For each update in the workload:

– Which attributes are involved in selection/join conditions? How

selective are these conditions likely to be?

– The type of update (INSERT/DELETE/UPDATE), and the

attributes that are affected.

Decisions to Make
• What indexes should we create?

– Which relations should have indexes?

– What field(s) should be the search key?

– Should we build several indexes?

• For each index, what kind of an index should it be?

© 2010, University of Colombo School of Computing

• For each index, what kind of an index should it be?

– Primary?

– Clustered?

– Hash/tree? Dynamic/static?

– Dense/sparse?

Decisions to Make

• Should we make changes to the conceptual

schema?

– Consider alternative normalized schemas?

(Remember, there are many choices in

decomposing into BCNF, etc.)

© 2010, University of Colombo School of Computing

decomposing into BCNF, etc.)

– Should we ``undo’’ some decomposition steps and

settle for a lower normal form?

(Denormalization.)

– Horizontal partitioning, replication, views ...

Choice of Indexes

• One approach: consider the most important queries. Consider the

best plan using the current indexes, and see if a better plan is

possible with an additional index. If so, create it.

• Before creating an index, must also consider the impact on updates

© 2010, University of Colombo School of Computing

• Before creating an index, must also consider the impact on updates

in the workload!

– Trade-off: indexes can make queries go faster, updates slower.

Require disk space, too.

Issues to Consider in Index

Selection
• Attributes mentioned in a WHERE clause are candidates for index

search keys.

– Exact match condition suggests hash index.

– Range query suggests tree index.

• Clustering is especially useful for range queries, although it
can help on equality queries as well in the presence of

© 2010, University of Colombo School of Computing

can help on equality queries as well in the presence of
duplicates.

• Try to choose indexes that benefit as many queries as possible.

• Since only one index can be clustered per relation, choose it based
on important queries that would benefit the most from clustering.

Issues in Index Selection (Contd.)

• Multi-attribute search keys should be considered when a

WHERE clause contains several conditions.

– If range selections are involved, order of attributes

should be carefully chosen to match the range

© 2010, University of Colombo School of Computing

should be carefully chosen to match the range

ordering.

– Such indexes can sometimes enable index-only

strategies for important queries.

Index Only Plan
• An index-only plan is a query evaluation plan which requires to

access only the indexes for the data records, and not the data

records themselves, in order to answer the query.

• Iindex only plans are much faster than regular plans since it

does not require reading of the data records.

© 2010, University of Colombo School of Computing

does not require reading of the data records.

• If a certain query is executed repeatedly which only require

accessing one field (for example the average value of a field) it

would be an advantage to create a search key on this field to

use an index-only plan.

Index-Only Plans

• A number of queries

can be answered

without retrieving

any tuples from one

or more of the

SELECT D.mgr, E.eid

FROM Dept D, Emp E

WHERE D.dno=E.dno

SELECT E.dno, COUNT(*)

FROM Emp E

GROUP BY E.dno

<E.dno,E.eid>

Tree index!

<E.dno>

© 2010, University of Colombo School of Computing

or more of the

relations involved if

a suitable index is

available.

SELECT E.dno, MIN(E.sal)

FROM Emp E

GROUP BY E.dno

SELECT AVG(E.sal)

FROM Emp E

WHERE E.age=25 AND

E.sal BETWEEN 3000 AND 5000

<E.dno,E.sal>

Tree index!

<E. age,E.sal>

or

<E.sal, E.age>

Tree!

Issues in Index Selection

• When considering a join condition:

– Hash index on inner is very good for

Index Nested Loops.

• Should be clustered if join column is not key

© 2010, University of Colombo School of Computing

• Should be clustered if join column is not key

for inner, and inner tuples need to be

retrieved.

– Clustered B+ tree on join column(s) good

for Sort-Merge.

Example1

• Hash index on D.dname supports ‘Toy’ selection.

SELECT E.ename, D.mgr

FROM Emp E, Dept D

WHERE D.dname=‘Toy’ AND E.dno=D.dno

© 2010, University of Colombo School of Computing

• Hash index on D.dname supports ‘Toy’ selection.

– Given this, index on D.dno is not needed.

• Hash index on E.dno allows us to get matching

(inner) Emp tuples for each selected (outer) Dept

tuple.

Example1

• What if WHERE included: `` ... AND E.age=25’’ ?

– Could retrieve Emp tuples using index on E.age,

then join with Dept tuples satisfying dname

selection.

© 2010, University of Colombo School of Computing

– If E.age index is already created, this query

provides much less motivation for adding an E.dno

index.

Example2

SELECT E.ename, D.mgr

FROM Emp E, Dept D

WHERE E.sal BETWEEN 10000 AND 20000

AND E.hobby=‘Stamps’ AND E.dno=D.dno

© 2010, University of Colombo School of Computing

• Clearly, Emp should be the outer relation.

– Suggests that we build a hash index on D.dno.

Example2

• What index should we build on Emp?

– B+ tree on E.sal could be used, OR an index on E.hobby

could be used. Only one of these is needed, and which is

better depends upon the selectivity of the conditions.

• As a rule of thumb, equality selections more selective

© 2010, University of Colombo School of Computing

• As a rule of thumb, equality selections more selective

than range selections.

• As both examples indicate, our choice of indexes is guided by

the plan(s) that we expect an optimizer to consider for a

query.

Clustering and Joins

SELECT E.ename, D.mgr

FROM Emp E, Dept D

WHERE D.dname=‘Toy’ AND E.dno=D.dno

• Clustering is especially important when accessing inner tuples in
INL.

– Should make index on E.dno clustered.

© 2010, University of Colombo School of Computing

– Should make index on E.dno clustered.

• Suppose that the WHERE clause is instead:

WHERE E.hobby=‘Stamps AND E.dno=D.dno

– If many employees collect stamps, Sort-Merge join may be

worth considering.

• Summary: Clustering is useful whenever many tuples are to be
retrieved.

Multi-Attribute Index Keys

• To retrieve Emp records with age=30 AND sal=4000, an index on

<age,sal> would be better than an index on age or an index on sal.

– Such indexes also called composite or concatenated indexes.

– Choice of index key orthogonal to clustering etc.

• If condition is: 20<age<30 AND 3000<sal<5000:

© 2010, University of Colombo School of Computing

• If condition is: 20<age<30 AND 3000<sal<5000:

– Clustered tree index on <age,sal> or <sal,age> is best.

• If condition is: age=30 AND 3000<sal<5000:

– Clustered <age,sal> index much better than <sal,age> index.

Summary
• Database design consists of several tasks: requirements analysis,

conceptual design, schema refinement, physical design and tuning.

– In general, have to go back and forth between these tasks to refine

a database design, and decisions in one task can influence the

choices in another task.

© 2010, University of Colombo School of Computing

• Understanding the nature of the workload for the application, and the

performance goals, is essential to developing a good design.

– What are the important queries and updates? What

attributes/relations are involved?

Summary (Contd.)

• Indexes must be chosen to speed up important queries (and perhaps

some updates!).

– Index maintenance overhead on updates to key fields.

– Choose indexes that can help many queries, if possible.

– Build indexes to support index-only strategies.

© 2010, University of Colombo School of Computing

– Build indexes to support index-only strategies.

– Clustering is an important decision; only one index on a given

relation can be clustered!

– Order of fields in composite index key can be important.

• Static indexes may have to be periodically re-built.

Database Tuning
• The process of continuing to revise/adjust the

physical database design by monitoring resource
utilization as well as internal DBMS processing to
reveal bottlenecks such as contention for the same
data or devices.

© 2010, University of Colombo School of Computing

• Goal:

– To make application run faster

– To lower the response time of queries/transactions

– To improve the overall throughput of transactions

Tuning Indexes

• Reasons to tuning indexes

– Certain queries may take too long to run for lack of

an index;

– Certain indexes may not get utilized at all;

– Certain indexes may be causing excessive overhead

because the index is on an attribute that undergoes

© 2010, University of Colombo School of Computing

because the index is on an attribute that undergoes

frequent changes

• Options to tuning indexes

– Drop or/and build new indexes

– Change a non-clustered index to a clustered index

(and vice versa)

– Rebuilding the index

Tuning Queries

• In some situations involving using of correlated

queries, temporaries are useful.

• The order of tables in the FROM clause may

affect the join processing.

© 2010, University of Colombo School of Computing

affect the join processing.

• Some query optimizers perform worse on

nested queries compared to their equivalent

un-nested counterparts.

Tuning Queries

• A query with multiple selection conditions that are
connected via OR may not be prompting the query
optimizer to use any index. Such a query may be split
up and expressed as a union of queries, each with a
condition on an attribute that causes an index to be
used.

© 2010, University of Colombo School of Computing

• Apply the following transformations NOT condition may
be transformed into a positive expression.

• Embedded SELECT blocks may be replaced by joins.

WHERE conditions may be rewritten to utilize the
indexes on multiple columns.

Tuning the Conceptual Schema
• The choice of conceptual schema should be guided by the workload,

in addition to redundancy issues:

– We may settle for a 3NF schema rather than BCNF.

– Workload may influence the choice we make in decomposing a

relation into 3NF or BCNF.

– We may further decompose a BCNF schema!

© 2010, University of Colombo School of Computing

– We may further decompose a BCNF schema!

– We might denormalize (i.e., undo a decomposition step), or we

might add fields to a relation.

– We might consider horizontal decompositions.

• If such changes are made after a database is in use, called schema

evolution; might want to mask some of these changes from

applications by defining views.

Summary of Database Tuning

• The conceptual schema should be refined by

considering performance criteria and workload:

– May choose 3NF or lower normal form over BCNF.

– May choose among alternative decompositions into

© 2010, University of Colombo School of Computing

– May choose among alternative decompositions into

BCNF (or 3NF) based upon the workload.

– May denormalize, or undo some decompositions.

– May choose a horizontal decomposition of a relation.

