
Database Recovery Techniques

© 2010, University of Colombo School of Computing 1

Dr. Jeevani Goonetillake

Types of Failure

– The database may become unavailable for use

due to

• Transaction failure: Transactions may fail

because of incorrect input, deadlock, incorrect

synchronization.

© 2010, University of Colombo School of Computing 2

synchronization.

• System failure: System may fail because of

addressing error, application error, operating system

fault, RAM failure, etc.

• Media failure: Disk head crash, power disruption,

etc.

– Recovery manager is responsible for

transaction atomicity and durability.

• Undo actions of aborted transactions.

• Actions from committed transactions can survive

system crashes.

Purpose of Database Recovery

© 2010, University of Colombo School of Computing 3

system crashes.

– To bring the database into the last consistent
state, which existed prior to the failure.

Transaction Log

– For recovery from any type of failure data values prior to
modification (BFIM - Before Image) and the new value after
modification (AFIM – After Image) are required.

– These values and other information is stored in a sequential file
called Transaction log. A sample log is given below. Back P and
Next P point to the previous and next log records of the same
transaction.

© 2010, University of Colombo School of Computing 4

T ID Back P Next P Operation Data item BFIM AFIM

T1 0 1

T1 1 4

T2 0 8

T1 2 5

T1 4 7

T3 0 9

T1 5 nil

Begin

Write

W

R

R

End

Begin
X

Y

M

N

X = 200

Y = 100

M = 200

N = 400

X = 100

Y = 50

M = 200

N = 400

– Data items to be modified are first stored into

database cache by the Cache Manager (CM).

– After modification they are flushed (written) to

Data Caching

© 2010, University of Colombo School of Computing 5

– After modification they are flushed (written) to

the disk.

Data Update
• In-place update: The disk version of the data item is

overwritten by the cache version (i.e. writes the buffer

back to the same original disk location).

– Immediate Update: As soon as a data item is

modified in cache, the disk copy is updated.

– Deferred Update: All modified data items in the cache

is written either after a transaction ends its execution

© 2010, University of Colombo School of Computing 6

is written either after a transaction ends its execution

or after a fixed number of transactions have completed

their execution.

• Shadow update: The modified version of a data item

does not overwrite its disk copy but is written at a

separate disk location.

Write-Ahead Logging

• When in-place update (immediate or deferred) is used

then log is necessary for recovery and it must be

available to recovery manager. This is achieved by

Write-Ahead Logging (WAL) protocol. WAL states that

– For Undo: Before a data item’s AFIM is flushed to the

database disk (overwriting the BFIM) its BFIM must be

© 2010, University of Colombo School of Computing 7

database disk (overwriting the BFIM) its BFIM must be

written to the log and the log must be saved on a

stable store (log disk).

– For Redo: Before a transaction executes its commit

operation, all its AFIMs must be written to the log and

the log must be saved on a stable store.

Steal/No-Steal and Force/No-Force

Possible ways for flushing database cache to database

disk:

• Steal: Cache page updated by a transaction can

be flushed to disk before transaction commits.

• No-Steal: Cache cannot be flushed before

transaction commit.

© 2010, University of Colombo School of Computing 8

transaction commit.

• Force: all Cache pages updated by a transaction

are immediately flushed (forced) to disk when the

transaction commits.

• No-Force: Modified pages may not immediately

be written to disk after a transaction commits.

Steal/No-Steal and Force/No-

Force
– These give rise to four different ways for

handling recovery:

• Steal/No-Force (Undo/Redo)

• Steal/Force (Undo/No-redo)

© 2010, University of Colombo School of Computing 9

• No-Steal/No-Force (Redo/No-undo)

• No-Steal/Force (No-undo/No-redo)

Typical database systems employ a

steal/no_force strategy.

Transaction Roll-back (Undo) and

Roll-Forward (Redo)

To maintain atomicity, a transaction’s operations are

redone or undone.

• Undo: Restore all BFIMs on to disk (Remove all

AFIMs).

• Redo: Restore all AFIMs on to disk.

© 2010, University of Colombo School of Computing 10

• Redo: Restore all AFIMs on to disk.

– Database recovery is achieved either by performing

only Undos or only Redos or by a combination of the

two. These operations are recorded in the log as they

happen.

Checkpoints in the System Log

• Time to time (randomly or under some criteria) the database
flushes its buffer to database disk to minimize the task of recovery.
The following steps defines a checkpoint operation:

1. Suspend execution of transactions temporarily.

2. Force write modified buffer data to disk.

3. Write a [checkpoint] record to the log, save the log to disk.

© 2010, University of Colombo School of Computing 11

3. Write a [checkpoint] record to the log, save the log to disk.

4. Resume normal transaction execution.

• During recovery redo or undo is required to transactions appearing
after [checkpoint] record.

Deferred Update
• Defer or postpone any actual updates to the database

until the transaction completes its execution

successfully and reaches its commit point.

• After the transaction reaches its commit point and the

log is force-written to disk, the updates are recorded in

© 2010, University of Colombo School of Computing 12

log is force-written to disk, the updates are recorded in

the database.

• If a transaction fails before reaching its commit point

there is no need to undo any operation. Hence this is

known as NO_UNDO/REDO recovery algorithm.

Deferred Update

© 2010, University of Colombo School of Computing 13

Deferred Update

© 2010, University of Colombo School of Computing 14

Immediate Update
Undo/No-redo Algorithm

– In this algorithm AFIMs of a transaction are

flushed to the database disk under WAL before

it commits.

– For this reason the recovery manager undoes

© 2010, University of Colombo School of Computing 15

– For this reason the recovery manager undoes
all transactions during recovery.

– No transaction is redone.

– It is possible that a transaction might have

completed execution and ready to commit but

this transaction is also undone.

Shadow Paging

• The AFIM does not overwrite its BFIM but
recorded at another place on the disk.
Thus, at any time a data item has AFIM
and BFIM (Shadow copy of the data item)
at two different places on the disk.

© 2010, University of Colombo School of Computing 16

X Y

Database

X' Y'

X and Y: Shadow copies of data items

X' and Y': Current copies of data items

During transaction execution, the shadow
directory is never modified.

Shadow Paging

© 2010, University of Colombo School of Computing 17

