Database Recovery Techniques

Dr. Jeevani Goonetillake

© 2010, University of Colombo School of Computing @

Types of Failure

— The database may become unavailable for use
due to

« Transaction failure: Transactions may fail
because of incorrect input, deadlock, incorrect
synchronization.

« System failure: System may fail because of
addressing error, application error, operating system
fault, RAM failure, etc.

« Media failure: Disk head crash, power disruption,
etc.

© 2010, University of Colombo School of Computing @ 2

Purpose of Database Recovery

— Recovery manager is responsible for
transaction atomicity and durability.

 Undo actions of aborted transactions.

 Actions from committed transactions can survive
system crashes.

— To bring the database into the last consistent
state, which existed prior to the failure.

© 2010, University of Colombo School of Computing @
UCSC

Transaction Log

— For recovery from any type of failure data values prior to
modification (BFIM - Before Image) and the new value after
modification (AFIM — After Image) are required.

— These values and other information is stored in a sequential file
called Transaction log. A sample log is given below. Back P and
Next P point to the previous and next log records of the same

transaction.
TID BackP NextP Operation Dataitem BFIM AFIM

T1 0 1 Begin

T1 1 4 Write X X=100 X =200
T2 0 8 Begin

T1 2 5 A\ Y Y=50 Y=100
T1 4 7 R M M =200 M =200
T3 0 9 R N N=400 N =400
T1 5 nil End

© 2010, University of Colombo School of Computing

D

Data Caching

— Data items to be modified are first stored into
database cache by the Cache Manager (CM).

— After modification they are flushed (written) to
the disk.

© 2010, University of Colombo School of Computing @

Data Update

 In-place update: The disk version of the data item is
overwritten by the cache version (i.e. writes the buffer
back to the same original disk location).

— Immediate Update: As soon as a data item is
modified in cache, the disk copy is updated.

— Deferred Update: All modified data items in the cache
IS written either after a transaction ends its execution
or after a fixed number of transactions have completed
their execution.

- Shadow update: The modified version of a data item
does not overwrite its disk copy but is written at a
separate disk location.

[@ ~
? © 2010, University of Colombo School of Computing @ 6
UCSC

Write-Ahead Logging

« When in-place update (immediate or deferred) is used
then log is necessary for recovery and it must be
available to recovery manager. This is achieved by
Write-Ahead Logging (WAL) protocol. WAL states that

— For Undo: Before a data item’s AFIM is flushed to the
database disk (overwriting the BFIM) its BFIM must be
written to the log and the log must be saved on a
stable store (log disk).

— For Redo: Before a transaction executes its commit
operation, all its AFIMs must be written to the log and
the log must be saved on a stable store.

[@ “
? © 2010, University of Colombo School of Computing @
UCSC

Steal/No-Steal and Force/No-Force

Possible ways for flushing database cache to database
disk:
. Steal: Cache page updated by a transaction can
be flushed to disk before transaction commits.

. No-Steal: Cache cannot be flushed before
transaction commit.

. Force: all Cache pages updated by a transaction
are immediately flushed (forced) to disk when the
transaction commits.

. No-Force: Modified pages may not immediately
be written to disk after a transaction commits.

[@ ~
? © 2010, University of Colombo School of Computing @ 8
UCSC

Steal/No-Steal and Force/No-
Force

— These give rise to four different ways for
handling recovery:
« Steal/No-Force (Undo/Redo)
« Steal/Force (Undo/No-redo)
* No-Steal/No-Force (Redo/No-undo)
* No-Steal/Force (No-undo/No-redo)

Typical database systems employ a
steal/no_force strategy.

© 2010, University of Colombo School of Computing @

Transaction Roll-back (Undo) and
Roll-Forward (Redo)

To maintain atomicity, a transaction’s operations are
redone or undone.

* Undo: Restore all BFIMs on to disk (Remove all
AFIMs).

« Redo: Restore all AFIMs on to disk.

— Database recovery is achieved either by performing
only Undos or only Redos or by a combination of the
two. These operations are recorded in the log as they
happen.

© :
? © 2010, University of Colombo School of Computing @ 10
UCSC

Checkpoints in the System Log

Time to time (randomly or under some criteria) the database
flushes its buffer to database disk to minimize the task of recovery.
The following steps defines a checkpoint operation:

1. Suspend execution of transactions temporarily.

2 Force write modified buffer data to disk.

3. Write a [checkpoint] record to the log, save the log to disk.
4 Resume normal transaction execution.

During recovery redo or undo is required to transactions appearing
after [checkpoint] record.

© 2010, University of Colombo School of Computing @ 11

Deferred Update

« Defer or postpone any actual updates to the database
until the transaction completes its execution
successfully and reaches its commit point.

« After the transaction reaches its commit point and the
log Is force-written to disk, the updates are recorded in
the database.

« If a transaction fails before reaching its commit point
there is no need to undo any operation. Hence this is
known as NO_UNDO/REDO recovery algorithm.

© 2010, University of Colombo School of Computing @ 12

Deferred Update

@ T, T,
read_item(A) read_item(B)
read_item(D) write_item(B)
write_item(D) read_item(D)

write_item(D)

(b) [start_transaction,T;]
[write_item, T;,D,20]
[commit, T,]
i [start_transaction, T,]
Figure 19.2
An example of recovery using [write_item, 7,,58,10]
deferred update in a single-user [write_item, T,,D,25] < System crash

environment. (a) The READ and

WRITE operations of two
transactions. (b) The system log The [write_item,...] operations of T, are redone.

at the point of crash. T, log entries are ignored by the recovery process.

© 2010, University of Colombo School of Computing @ 13

(@

Deferred

Update

T

T,

Ts

Ts

read_item(A)

read_item(B)

read_item(A)

read_item(B)

read_item(D)

write_item(B)

write_item(A)

write_item(B)

write_item(D)

read_item(D)

read_item(C)

read_item(A)

write_item(D)

write_item(C)

write_item(A)

(b) [start_transaction, T;]
[write_item, T,, D, 20]
[commit, T,]

[checkpoint]

[start_transaction, T,]
[write_item, T,, B, 15]
[write_item, T,, A, 20]
[commit, T,]

[start_transaction, T,]
[write_item, T,, B, 12]
[start_transaction, T3]
[write_item, T3, A, 30]
[write_item,T,, D, 25]

-+ System crash

T, and T3 are ignored because they did not reach their commit points.

T, is redone because its commit point is after the last system checkpoint.

Figure 19.4
An example of recovery using deferred update with concurrent transactions.

(a) The READ and WRITE operations of four transactions. (b) System log at the point of crash.

© 2010, University of Colombo School of Computing

14

Immediate Update

Undo/No-redo Algorithm

— In this algorithm AFIMs of a transaction are
flushed to the database disk under WAL before
it commits.

— For this reason the recovery manager undoes
all transactions during recovery.

— No transaction is redone.

— It Is possible that a transaction might have
completed execution and ready to commit but
this transaction is also undone.

© :
? © 2010, University of Colombo School of Computing @ 15
UCSC

Shadow Paging

 The AFIM does not overwrite its BFIM but
recorded at another place on the disk.
Thus, at any time a data item has AFIM
and BFIM (Shadow copy of the data item)
at two different places on the disk.

X and Y: Shadow copies of data items
/7 X" and Y': Current copies of data items
U

© 2010, University of Colombo School of Computing 16
CSC

Shadow Paging

During transaction execution, the shadow
directory is never modified.

Current directory Database disk Shadow directory Figure 19.5
(after updating blocks (pages) (not updated) An example of
pages 2, 5) shadow paging.
1 . Page 5 (old) - o 1
2 . - Page 1 -) 2
3 o | Page 4 - ° 3
4 . Page 2 (old) - o 4
5 . —| Page 3 = ° 5
6 . »| Pageb6 - o 6
—| Page 2 (new)
—| Page 5 (new)

© 2010, University of Colombo School of Computing @ 17

