
Transaction Management

© 2010, University of Colombo School of Computing 1

Dr. Jeevani Goonetillake



Single User Vs Multiuser 

Systems

• Single user -at most one user at a time can use

the system. Restricted to some PC DBMS.

© 2010, University of Colombo School of Computing 2

• Multi-user -many users can use the system

concurrently (at the same time). Most DBMS are

multi-user. E.g. Airline reservations systems,

banks, Insurance agencies, stock exchanges are

multi- user systems operated concurrently.



MultiProgramming

• Multiple users can use computer systems
simultaneously because of the concept of
multiprogramming.

• When only one CPU, the multiprogramming

© 2010, University of Colombo School of Computing 3

• When only one CPU, the multiprogramming
operating systems
– execute some commands from one program,

– then suspend that program and execute some
commands from the next program and so on. A program
is resumed at the point where it was suspended when it
gets its turn to use the CPU again.



Interleaved Processing Vs 

Parallel Processing

�Hence, concurrent execution of the program is 
actually interleaved. Simultaneous processing of 
multiple programs are done with multiple CPUs. 

© 2010, University of Colombo School of Computing 4



Transaction Support

Transaction

Action, or series of actions, carried out by
user or application, which accesses or
changes contents of database.

© 2010, University of Colombo School of Computing 5

• Logical unit of work on the database.

• Transforms database from one
consistent state to another, although
consistency may be violated during
transaction.



Example Transaction

• E.g. Transaction Tl -No of reservations for airline 
A is X; No of reservation for airline B is Y; N 
reservation from A is cancelled and booked for B. 

• Transaction T2 -M reservations to airline A. 
T1 T2 

read_item(X) read_item(X) 

© 2010, University of Colombo School of Computing 6

read_item(X) read_item(X) 

X=X-N X=X+M 

write_item(X) write_item(X) 

read_item(Y) 

Y=Y+N 

write_item(Y) 



Transaction Support

• Can have one of two outcomes:

– Success - transaction commits and

database reaches a new consistent state.

– Failure - transaction aborts, and database

© 2010, University of Colombo School of Computing 7

– Failure - transaction aborts, and database

must be restored to consistent state before it

started.

– Such a transaction is rolled back or undone.



Properties of Transactions

•Four basic (ACID) properties of a transaction are:

Atomicity ‘All or nothing’ property.

Consistency Must transform database from one
consistent state to another.

© 2010, University of Colombo School of Computing 8

Isolation Partial effects of incomplete transactions
should not be visible to other transactions.

Durability Effects of a committed transaction are
permanent and must not be lost because of

later failure.



Transaction Support

• For recovery purpose, the system needs to

keep track of when the transaction starts,

terminates and commits or aborts. The

recovery manager keeps track of:

– BEGIN_TRANSACTION marks the beginning of

© 2010, University of Colombo School of Computing 9

– BEGIN_TRANSACTION marks the beginning of

transaction execution

– READ or WRITE operations on the database items

that are executed.

– END_TRANSACTION specifies that READ and

WRITE transaction operations have ended and

mark the end of transaction execution.



Transaction Support

– COMMIT_TRANSACTION signals a successful end

of the transaction so that any changes (updates)

executed by the transaction can be safely

committed to the database and will not be undone.

– ROLLBACK (or ABORT) signals that the transaction

© 2010, University of Colombo School of Computing 10

– ROLLBACK (or ABORT) signals that the transaction

has ended unsuccessfully so that any changes or

effects that the transaction may have applied to the

database must be undone.



Concurrency Control

Process of managing simultaneous operations
on the database without having them interfere
with one another.

• Prevents interference when two or more users
are accessing database simultaneously and at
least one is updating data.

© 2010, University of Colombo School of Computing 11

least one is updating data.

• Although two transactions may be correct in
themselves, interleaving of operations may
produce an incorrect result.



Concurrency Control

• Three examples of potential problems
caused by concurrency:

– Lost update problem.

© 2010, University of Colombo School of Computing 12

– Lost update problem.

– Uncommitted dependency problem.

– Inconsistent analysis problem.



Lost Update Problem

• This occurs when two transactions that
access the same database item have their
operations interleaved in a way that makes
the value of some database item incorrect.

E.g. Originally there were 80 reservations

© 2010, University of Colombo School of Computing 13

E.g. Originally there were 80 reservations
on the flight.
– T1 transfers 5 seat reservations from the flight

corresponding to X to the flight corresponding
to Y.

– T2 reserves 4 seats on X.

– Serially, final result of X should be 79.



Lost Update Problem
T1 T2 

read_item(X) X = 80, N = 5, M = 4 

X = X -N X = 75 

read_item(X) X = 80

X=X+M X=84 

write_item(X) 

read_item(Y)  

© 2010, University of Colombo School of Computing 14

• The update in T1 that removed the five seats
from X was lost.

read_item(Y)  

write_item (X) 

Y=Y+N 

write_item(Y) gives X = 84, 

but should be 80-5+4 = 79 



Uncommitted Dependency Problem

• Occurs when one transaction can see

intermediate results of another transaction

before it has committed.

• T1 cancels 5 seat reservations updating X to

75. Later T1 aborts, so X should be back at

© 2010, University of Colombo School of Computing 15

75. Later T1 aborts, so X should be back at

original value of 80.

• T2 has read new value of X (75) and reserves

4 seats, giving X = 79, instead of 84.



Uncommitted Dependency Problem

T1 T2 

read_item(X) X = 80, N = 5, M = 4 

X = X -N X = 75 

write_item(X) 

read_item(X) X = 75 

X=X+M X=79 

© 2010, University of Colombo School of Computing 16

X=X+M X=79 

write_item(X) 

read_item(Y) 

-abort -changes X back to its 

original value gives X = 80, 

but should be 80+4 = 84



Uncommitted Dependency Problem

• T2 reads the ‘temporary’ value of X, which will

not be recorded permanently in the database

because of the failure of T1.

• The value of item X that is read by T2 is called

© 2010, University of Colombo School of Computing 17

• The value of item X that is read by T2 is called

dirty data, because it has been created by a

transaction that has not completed and

committed yet. Hence this problem is also

known as the dirty read problem.



Uncommitted Dependency Problem

• This problem can be avoided by
preventing T2 from reading X until after
T1 commits or aborts.

© 2010, University of Colombo School of Computing 18

T1 commits or aborts.



Inconsistent Analysis Problem

• If one transaction is calculating an
aggregate summary function on a number
of records while other transactions are
updating some-of these records, the

© 2010, University of Colombo School of Computing 19

updating some-of these records, the
aggregate function may calculate some
values before they are updated and
others after they are updated.



Inconsistent Analysis Problem

T1 T2 

sum = 0 

read_item(X) 

X = X -N 

write_item(X) 

read_item(X) 

� Problem avoided

by preventing T2

from reading X and

Y until after T1

completed updates.

© 2010, University of Colombo School of Computing 20

read_item(X) 

sum = sum + X 
read_item(Y) 
sum = sum +Y 

read_item(Y) 

Y=Y+M 

write_item(Y) 

completed updates.



Serializability

• Objective of a concurrency control protocol is
to schedule transactions in such a way as to
avoid any interference.

• Could run transactions serially, but this limits
degree of concurrency or parallelism in

© 2010, University of Colombo School of Computing 21

degree of concurrency or parallelism in
system.

• Serializability identifies those executions of
transactions guaranteed to ensure
consistency.



Serializability
Schedule

Sequence of reads/writes by set of
concurrent transactions.

Serial Schedule

© 2010, University of Colombo School of Computing 22

Schedule where operations of each
transaction are executed consecutively
without any interleaved operations from other
transactions.

• No guarantee that results of all serial
executions of a given set of transactions will be
identical.



Nonserial Schedule

• Schedule where operations from set of
concurrent transactions are interleaved.

• Objective of serializability is to find nonserial
schedules that allow transactions to execute

© 2010, University of Colombo School of Computing 23

schedules that allow transactions to execute
concurrently without interfering with one another.

• In other words, want to find nonserial schedules
that are equivalent to some serial schedule. Such
a schedule is called serializable.



Equivalence of Schedules

• Two schedules are called result equivalent if
they produce the same final state of the
database.

Two schedules can accidentally produce the
same final database.

© 2010, University of Colombo School of Computing 24

same final database.

• For two schedules to be equivalent the
operations applied to each data item affected
by the schedules should be applied to that
item in both schedules in the same order.



Equivalence of Schedules

• In serializability, ordering of read/writes is
important:
(a) If two transactions only read a data item,

they do not conflict and order is not important.

(b) If two transactions either read or write

© 2010, University of Colombo School of Computing 25

(b) If two transactions either read or write
completely separate data items, they do not
conflict and order is not important.

(c) If one transaction writes a data item and
another reads or writes same data item, order
of execution is important.



Equivalence of Schedules

• Two definitions of equivalence of 
schedules are generally used:

– Conflict equivalence

© 2010, University of Colombo School of Computing 26

– Conflict equivalence

– View equivalence



Conflict equivalence

• Two schedules are said to be conflict
equivalent if order of any two conflicting
operations is the same in both schedules.

• A schedule S is conflict serializable if it is
(conflict) equivalent to some serial schedule S’.

© 2010, University of Colombo School of Computing 27

(conflict) equivalent to some serial schedule S’.

• Conflict serializable schedule orders any
conflicting operations in same way as some
serial execution.



Precedence Graph

• Precedence graph is used for determining the
conflict serializability of a schedule.

• Create:
– node for each transaction;

– a directed edge Ti → Tj, if Tj reads the value of an
item written by T ;

© 2010, University of Colombo School of Computing 28

– a directed edge Ti → Tj, if Tj reads the value of an
item written by TI;

– a directed edge Ti → Tj, if Tj writes a value into an
item after it has been read by Ti.

• If precedence graph contains cycle schedule is
not conflict serializable.



Example

• T9 is transferring £100 from one account
with balance balx to another account with
balance baly.

• T10 is increasing balance of these two

© 2010, University of Colombo School of Computing 29

• T10 is increasing balance of these two
accounts by 10%.



Example

© 2010, University of Colombo School of Computing 30



View Serializability

• Offers less restrictive definition of
schedule equivalence than conflict
serializability.

• Two schedules S and S are view

© 2010, University of Colombo School of Computing 31

• Two schedules S1 and S2 are view
equivalent if the following three conditions
hold:

– For each data item x, if Ti reads initial value of x
in S1, Ti must also read initial value of x in S2.



View Serializability

– For each read on x by Ti in S1, if value

read by x is written by Tj, Ti must also

read value of x produced by Tj in S2.

© 2010, University of Colombo School of Computing 32

read value of x produced by Tj in S2.

– For each data item x, if last write on x

performed by Ti in S1, same transaction

must perform final write on x in S2.



View Serializability

• Schedule is view serializable if it is view
equivalent to a serial schedule.

• Every conflict serializable schedule is view
serializable, although converse is not true.

© 2010, University of Colombo School of Computing 33

serializable, although converse is not true.

• It can be shown that any view serializable
schedule that is not conflict serializable
contains one or more blind writes.

• In general, testing whether schedule is
serializable is NP-complete.



Example - View Serializable 

schedule

• T1: r1(X); w1(X); T2: w2(X); and T3: w3(X);

S1 : r1(X); w2(X); w1(X); w3(X);

© 2010, University of Colombo School of Computing 34

S1 : r1(X); w2(X); w1(X); w3(X);

w2(X) and w3(X) – blind writes

Schedule S1 is view serializable since it is 

equivalent to the serial schedule T1, T2, T3.


